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Abstract—Network expansion and traffic engineering (TE)
are the two prevalent approaches for network operators to
deal with the growth of Internet traffic. Although these are
two complementary approaches, they are generally conducted
completely independent of each other. In this paper, we argue
for the importance of integrating routing and TE schemes already
during expansion planning. For this, we introduce the 2SR
Network Expansion Problem (2SR-NEP) that, given a network
topology and a traffic forecast, aims for a minimum-cost net-
work expansion that satisfies the projected demands under the
2-Segment Routing paradigm. We prove the NP-hardness of
the 2SR-NEP and propose the TROPIC algorithm to solve it
heuristically. An evaluation on a publicly available dataset shows
the approach’s ability to achieve cost savings of up to 60% over
a baseline approach.

I. INTRODUCTION

The volume of IP traffic which Internet Service Providers
(ISPs) must handle is projected to keep growing at significant
rates, largely driven by multimedia applications [1], [2]. In
order to uphold service-level agreements with customers,
network operators must ensure enough capacity is available to
deliver every traffic demand. Therefore, the task of planning
and evolving link capacities is of critical importance for
ISPs. Since long-term capacity expansion typically requires
significant capital investment, it is crucial to find cost-effective
solutions. Aside from expanding link capacities, ISPs today
make use of traffic engineering (TE) to optimize the load
distribution in the network. Traditionally, however, the joint
consideration of network planning and TE has been unrealistic,
assuming routing schemes that are either significantly less
or significantly more powerful than what current technology
permits. In fact, prominent networking hardware vendors such
as Cisco [3] or Juniper [4] also segregate their tool suites for
capacity planning and TE into separate components.

In this paper, we show that an integrated planning approach
using 2-Segment Routing (2SR) can provide significant cost
savings compared to a baseline approach that reflects plan-
ning behavior still commonly used today. In order to make
the setting amenable to theoretical analysis, we propose the
2SR Network Expansion Problem (2SR-NEP) to model the
problem. Specifically, we make the following contributions:

• We introduce the 2SR-NEP and prove its NP-hardness.
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• We propose the heuristic TROPIC algorithm to solve the
2SR-NEP in acceptable time even for large networks.

• We provide a comprehensive evaluation of TROPIC on
instances derived from the REPETITA dataset [5], achiev-
ing cost reductions of up to 60% compared to a greedy
baseline approach.

In Sec. II, we introduce relevant background knowledge and
discuss related work. In Sec. III, we introduce our network
model in order to formally define the 2SR-NEP and prove its
NP-hardness. Sec. IV proceeds to describe the implementation
of the TROPIC algorithm. In Sec. V, we describe the synthetic
dataset used in the evaluation. The evaluation approach, its
results, and its limitations are discussed in Sec. VI before the
paper is concluded with a recapitulation of our most important
findings and a discussion of possible future work in Sec. VII.

II. BACKGROUND

As the 2SR-NEP concerns the domains of Segment Routing
for Traffic Engineering (SR-TE) and capacity planning, this
section introduces relevant literature for both. At the end of
the section, we discuss the limitations of existing approaches
and the potential benefits of an integrated planning approach.

A. Segment Routing

Segment Routing [6] is a network architecture following the
source-routing paradigm. An SR-enabled router can choose to
apply a list of segments (a specific node, adjacency, or service)
to any packet it injects into the network. The packet is routed
between the individual waypoints given by the segments along
the shortest paths defined by the Interior Gateway Protocol
(IGP). Due to its immaculate traffic steering capabilities com-
bined with an exceptionally low overhead, SR has become one
of, if not the premier technological choices for many network
operators, resulting in lots of attention from both industry [7]–
[9] and academic research [10]. Although a multitude of
TE objectives are considered in the academic literature, a
major focus lies on the minimization of the network’s max-
imum link utilization (MLU). There are different approaches
towards solving the SR-TE problem, e.g., based on linear
programming (LP) [11], column generation [12], constraint
programming [13], or meta-heuristic approaches [14].

Although there is some literature that studies SR’s perfor-
mance under short-term changes in the topology such as node
or link failures [15]–[17], we are not aware of any study



that considers long-term expansions of the network through
capacity upgrades or link additions.

B. Capacity Planning

At some point, logical changes to routing paths are no
longer sufficient to handle a growing traffic volume, and phys-
ical network expansion becomes necessary. There are many
ways to pose the network design problem, see, e.g., [18] for
an overview. However, as pointed out in [19], “little has been
revealed about production network planning” of large network
operators such as ISPs or hyperscalers. In [20], Holmberg
and Yuan present a generalized LP formulation for different
network design problems. They show that the optimization of
link weights can significantly reduce planning costs compared
to the default weight-setting strategy employed in OSPF, even
when the network flows are only considered sequentially.

Gerstel et al. use multi-layer planning to reduce overpro-
visioning in IP-optical networks [21]. Their method relies on
modelling hardware failures at the optical layer and resolving
them using an integrated IP-optical restoration approach. They
do not proactively adjust routing paths. Gkamas et al. also
present a multi-layer planning algorithm [22]. Their approach
considers routing implicitly by assigning IP/MPLS links to
light paths, but it does not allow the use of TE when assigning
routes. Other approaches (e.g. [23]) use a general path model
with binary decision variables for each possible routing path.
This typically runs into scaling issues for networks of larger
sizes. Additionally, such models assume arbitrarily expressive
traffic steering capabilities, which cannot realistically be im-
plemented in practice.

Ahuja et al. present the planning model used for Facebook’s
backbone network which relies on yet a different routing
scheme [19]. Here, the flows are routed according to a frac-
tional multi-commodity flow (MCF) formulation. The authors
explain that they account for this overly optimistic assumption
by multiplying the traffic demands with a routing overhead
parameter. However, they neither go into detail about how the
actual routing policies are obtained from the MCF result when
a planning solution is to be implemented, nor do they offer
any guidance on how to choose the overhead parameter.

C. Benefits of Integrated Planning

While the above weight-tuning and MCF-based planning
paradigms may be able to achieve reasonably good theoretical
results, there are several issues when it comes to a practical
deployment of the respective solutions, which can be resolved
by the SR-based, integrated approach proposed in this paper.

IGP weight tuning is inflexible. While metric-based
TE can often achieve near-optimal results in regard to link
utilization [24], it lacks the traffic steering flexibility available
with modern TE techniques such as SR. In particular, with
SR-TE, traffic can be steered on a per-flow basis, allowing
network operators to use different paths for different traffic
flows between the same origin-destination pair, tailored to the
requirements of a specific traffic flow (e.g., guaranteeing low
latency for time-sensitive data, or avoiding specific nodes for

data privacy). Weight tuning does not offer such flexibility.
Furthermore, tuned link weights may no longer follow any
real-world property (e.g., capacity or latency), making them
difficult to understand even for experts. In practice, network
operators prefer a routing scheme that allows a “human in the
loop” to comprehend the installed paths and the effects that
would result from changing them [9].

Thus, although weight tuning is still used in present-day
networks, many ISPs are looking to migrate to SR as the
dominant TE technique. Consequently, the planning of future
network expansions should be based on the SR-TE paradigm.

MCF is not realistic. The category of weight-tuning
planning approaches assume less than what is possible with
current technologies. In contrast, the category of MCF-based
planning approaches assumes too much, as arbitrary routing
paths cannot realistically be implemented. Thus, operators are
required to translate the routes into a practical routing scheme.
This may lead to significant degradation of the solution quality.
By planning with SR from the beginning, operators can be sure
that the planning result corresponds closely to the real network
conditions and constraints.

III. PROBLEM DEFINITION

This section describes assumptions and requirements regard-
ing the network and forecasting model on which our work will
be based. Building on this, we formally define the 2SR-NEP
and prove its NP-hardness.

A. Network and Forecasting Model

The IP network under study is given as a graph G = (V,A)
with bidirected edges (links). Each link l ∈ A is attributed
with a capacity c(l) ∈ Q≥0 and a routing weight w(l) ∈ Q+.
It holds that (u, v) ∈ A for each (v, u) ∈ A and, more strictly,
c(l) = c(r(l)).1 We assume that IP flows in the network can
be routed with 2SR.

The set of links that should be considered in the expan-
sion planning process (the candidate links, CLs) is given by
K = B ⊎ I wherein B ⊆ A describes the existing links to be
expanded and I ⊆ V 2 \ A are the innovative candidate links
(ICLs) that can be newly added to the network. In order to
preserve the bidirectionality of links in a planning solution,
we require that (u, v) ∈ K for each (v, u) ∈ K. For each
CL l ∈ B, there is a modular capacity µ(l) ∈ Q+ as well
as an expansion price ξ(l) ∈ Q≥0 defining the cost of adding
µ(l) units of capacity to l. An ICL i ∈ I is also equipped
with an initial capacity η(i) ∈ Q+ and an associated addition
cost ζ(i) ∈ Q≥0, representing the upfront investment required
to add i to the network. Before an innovative link can be
expanded it must be added to the network. All costs in our
model can be considered as total costs of ownership (TCO).

We assume a forecast of the traffic demands at the planning
horizon is available in the form of a traffic matrix (TM) T =
(tu,v)u,v∈V where tu,v ∈ Q≥0 represents the traffic demand
from node u to node v.

1For every link l, we refer to the link in the reverse direction as r(l).



B. The 2SR Network Expansion Problem (2SR-NEP)

Let UT ∈ Q+ give the acceptable threshold for the MLU
when T is routed in the expanded network. This parameter is
chosen by network operators as a tradeoff between efficient
network utilization in normal operations and robustness to
sudden traffic surges as an effect of unforeseen events. We
can now define the 2SR-NEP.

Definition 1 (2SR Network Expansion Problem). Given a
network graph G, CLs K, traffic demands T, and an MLU
threshold UT (all as previously defined), an instance of the
2SR-NEP is given by I = (G,K,T, UT ). The problem
asks for an addition vector y = (y(i))i∈I , y(i) ∈ {0, 1}, an
expansion vector λ = (λ(l))l∈K , λ(l) ∈ N, and a policy plan
x = (xk

s,t)s,t,k∈V , x
k
s,t ∈ Q≥0, such that (i) the cost incurred

by implementing y and λ is minimal, and (ii) UT is adhered
to when routing T according to p in the expanded network.
xk
s,t describes the fraction of the s-t-demand that should be

routed via the midpoint k (following the model of [11]). In an
I-solution (y, λ, x), the capacity of any link l ∈ B is given by
cap(l) = c(l) + λ(l) · µ(l), and the capacity of an innovative
link i ∈ I is given by cap(i) = y(i) · ζ(i) + λ(i) · µ(i). We
require of every solution that cap(l) = cap(r(l)) for all l ∈ A′

(cf. Sec. III-A).

We now proceed to prove the problem’s NP-hardness. The
general idea of the proof is to construct a network in which
the existence of a capacity-admissible routing of a demand
corresponds to an element being covered in a Set Cover (SC)
instance, and expanding the capacity of a link corresponds
to choosing a set into the cover. The rest of the construction
ensures that certain links cannot be used for certain routing
paths, and that a cost-optimal 2SR-NEP solution corresponds
to a minimal set cover.

Theorem 1. The 2SR-NEP is NP-hard.

Proof. We give a reduction from the NP-hard Set Cover
problem. Consider an SC instance ISC = (U,S) where
S = {Sj ⊆ U : j ∈ [m]} and U = {xi : i ∈ [n]}. (We use the
notation [m] := {1, . . . ,m},m ∈ N.) We seek a cover C ⊆ S
where

⋃
S∈C S = U and |C| is minimal. We construct the

2SR-NEP instance INEP as follows. Define the sets of nodes

VU := {oi : i ∈ [n]}, VS := {σj : j ∈ [m]}, Vd := {d},

and set V := VU ⊎ VS ⊎ Vd. Next, we define the edges of the
graph as

Ao→σ = {(oi, σj) : xi ∈ Sj}, Aσ→o = {(σj , oi) : xi ∈ Sj},
AU = Ao→σ ⊎Aσ→o, c(l) := 1 for l ∈ AU , and

AS := (VS × Vd) ⊎ (Vd × VS) , c(l) :=
1

|S|+ 1
for l ∈ AS .

Accordingly, A := AU⊎AS . Define the CLs as K = F = AS ,
and let

ξ(l) := 0.5 for l ∈ K,µ(l) := |Sj | for (σj , d), (d, σj) ∈ K.

o1 o2 o3 o4
VU

σ1 σ2 σ3VS

d
Vd

AU

AS

Fig. 1. Topology of 2SR-NEP instance derived from SC instance
(U = {x1, x2, x3, x4},S = {{x1, x2, x3}, {x2, x3}, {x3, x4}})

We set w(l) := 1 for all l ∈ A. The traffic demand from u to
v is given by

tu,v = t(u, v) :=

{
1, (u, v) ∈ (VU × Vd) ∪Aσ→o,

0, otherwise.

Finally, we set the link utilization threshold as UT := 1. An
example of this construction is depicted in Fig. 1.

Now, assume that the 2SR-NEP problem can be solved
optimally. Let X ⊆ I be the set of links that have been
expanded in an optimal solution of INEP, i.e.,

X := {l ∈ K : λ(l) > 0} ⊆ K. (1)

Since expanding a forward link implies that the reverse link
is expanded as well, X = {(σj , d), (d, σj) : j ∈ J∗ ⊆ [m]}.
Claim. The cover

C := {Sj : (σj , d) ∈ X} (2)

is an optimal solution of ISC.
To see this, we will first make a few observations.

Observation 1. If t(σj , oi) ̸= 0, the demand is routed via the
path σj → oi (i.e., using only the edge (σj , oi)).

To see this, consider the capacity across the cut δ(VS → VU )
and the sum of demand volumes that need to be routed across
the cut. Since none of the links in the cut can be expanded by
construction, it is easy to see that both quantities are exactly
|Aσ→o|. Therefore, in an admissible solution, the demand is
routed via just one link from δ(VS → VU ). Using an additional
link would require more capacity than is available in the cut.

Observation 2. In any admissible INEP solution, (at least) one
of the links (σj1 , d), . . . , (σjk , d) has been expanded.

Consider any non-zero oi-d-demand and its routing paths
oi → {σj1 , . . . , σjk} → d (the flow may be split). Since c(l) =
1/(|S|+1) for all l ∈ AS per construction, and since there are
at most |S| links to split over, the demand cannot be routed
with the existing capacities. The observation follows directly.

Observation 3. In any optimal INEP solution, λ(l) ≤ 1 holds
true for all l ∈ K.

After Obs. 1, it suffices to consider the routing of demands
t(σj , d) for (σj , d) ∈ VS × Vd. Per construction, adding one
module of capacity to the link (σj , d) is enough to satisfy the
demand. Since ξ(σj , d) > 0, no excessive capacity is added
in an optimal solution.



Observation 4. The cost of X (as defined in (1)) is equal to
the cardinality of C (as defined in (2)).

This is easy to see when considering Obs. 3 and recalling
that forward and reverse direction of a link must always be
expanded at the same time.

We will now use these observations to show the admissibil-
ity and optimality of C as a solution to ISC.

On the admissibility of C. We have to show that any
xi ∈ U is covered by C. In an admissible INEP solution,
every non-zero demand has a capacity-admissible routing
path. Because of Obs. 1, the links from Aσ→o are fully
utilized already. Therefore, in every admissible solution, each
oi-d-demand must be split along paths of the form oi →
{σj1 , . . . , σjk} → d. Because of (oi, σj1), . . . , (oi, σjk) ∈ A,
we know xi ∈ Sj1 , . . . , Sjk . Additionally, according to Obs. 2,
one of the edges (σj1 , d), . . . , (σjk , d) must have been ex-
panded, let us say (σj1 , d). Because of Obs. 3, λ(σj1 , d) = 1,
implying (σj1 , d) ∈ X , which means Sj1 ∈ C. Hence,
xi ∈ Sj1 ⊆

⋃
S∈C S, therefore xi is covered and C is an

admissible solution to ISC.
On the optimality of C. For the purpose of arriving at a

contradiction, assume C was not an optimal ISC solution. Then
there exists a subfamily C′ ⊆ S with

⋃
S∈C′ S = U and |C′| <

|C|. Consider the INEP solution defined as follows:

λ′(l) :=


1, l = (σj , d) ∈ AS and Sj ∈ C′,

1, l = (d, σj) ∈ AS and Sj ∈ C′,

0, otherwise.

Furthermore, let (i) any oi-d-demand be routed along a path
of the form oi → σ → d, and (ii) any σj-oi-demand be routed
directly along the edge (σj , oi). It is easy to check that this
expansion and policy plan describe an admissible solution to
INEP (omitted here for lack of space). Its cost is given by

cost(λ′) =
∑
l∈K

(λ′(l) · ξ(l)) =
∑
Sj∈C′

2 · (1 · 0.5) = |C′|.

As seen in Obs. 4, cost(λ) = |C|. Therefore,

cost(λ′) = |C′| < |C| = cost(λ).

This, however, contradicts the assumption that λ is an optimal
INEP solution. Thus, C′ cannot exist and C is optimal, proving
the NP-hardness of INEP.

IV. ALGORITHMIC APPROACH

With the 2SR-NEP being NP-hard, it is unlikely that there
exists an efficient algorithm that provides optimal solutions
to this problem for larger instances within reasonable time.
However, due to the generally high capital investment required
for network expansion, being able to compute solutions that
come at least reasonably close to the most cost-effective
solution is still an important objective for operators. To address
this need, we propose TROPIC, a heuristic algorithm for
TRaffic-Engineering-Oriented Planning of IP Core networks.

One of the biggest hurdles regarding an efficient compu-
tation of optimal solutions is the large number of possible

min
∑
i∈I

y(i) · ζ(i) +
∑

l∈K\I

λ(l) · ξ(l) (3)

∑
u∈V

f t
(m,u) =

∑
v∈V

f t
(v,m) + tm,t ∀m ̸= t ∈ V (4)∑

t∈V

f t
(u,t) ≤ UT · κ(u, t) ∀(u, t) ∈ A ⊎ I (5)

κ(l) =


c(l), l ∈ A \B,

c(l) + λ(l) · µ(l), l ∈ B,

y(l) · η(l), l ∈ I

∀l ∈ A ⊎ I (6)

κ(l) = κ(r(l)) ∀e ∈ K (7)
f t
(u,v) ∈ Q≥0 ∀(u, v) ∈ A, t ∈ V (8)

y(i) ∈ [0, 1] ∀i ∈ I (9)
λ(l) ∈ Q≥0 ∀l ∈ K \ I (10)

Prob. 1. First-stage model of the TROPIC algorithm

innovative links to consider. TROPIC addresses this by em-
ploying a two-stage approach. In the first stage, a subset of
promising ICLs is heuristically added to the topology. The
second stage then computes optimal link expansions for the
enlarged network.

A. First Stage: Estimating Relevance of Innovative Candidates

In order to identify promising ICLs, we rely on an MCF-
based model. The main reason for using MCF and not SR in
this stage is that integrating the concept of link additions into
an efficient 2SR formulation would require the use of O(2|I|)
configuration variables. Furthermore, it has been shown that
2SR often closely matches MCF solutions in terms of MLU.
Hence, even though we assume a perfect routing in the
first stage, chances are high that an equivalent routing can
be implemented with 2SR as well. To further reduce the
computational requirements for this stage, we allow linear
(instead of modular) capacity upgrades and allow ICLs to be
added “fractionally”, i.e., to any degree between 0 and 1. The
extents to which ICLs are added in the first-stage solution
can be considered an indicator for their respective importance,
which is why we use them to select the ICL subset that ought
to be added to the network (cf. Sec. IV-B).

Prob. 1 presents the LP formulation for the first stage. The
variable f t

(u,v) gives the volume of traffic destined to t that
crosses the link (u, v). y(i) represents the degree to which
i ∈ I is built. λ(l) defines the amount of capacity that is
added to any CL l ∈ K \ I . The objective function (3) aims
to minimize the total expansion cost, consisting of addition
and expansion costs. (4) ensures that every demand is routed
in a feasible solution. (5) limits the volume of traffic that
can flow over a link such that the MLU threshold is always
respected. The available capacity on any link is determined
by (6): For non-candidate links, this is simply the capacity in
the original network. For non-innovative candidate links, the
original capacity can be expanded with additional capacity,



controlled via λ. As discussed earlier, ICLs can be built
fractionally, but they can never be expanded past their initial
capacities η. (7) ensures that capacities in the forward and
reverse direction of a link are kept equal (cf. Sec. III-A).
Overall, this first stage of TROPIC consists of O(|A| · |V |)
variables and O(|V |2) constraints. Therefore, it can be solved
in polynomial time with well-known methods (e.g., [25]).

B. Heuristic Link Selection

Using the first-stage solution, I is modified before being
passed to the second stage. The idea of this processing step
is to identify valuable ICLs from the addition degrees y.
Assuming that links which are cost-effective under an MCF-
based routing are also cost-effective under 2SR, all innovative
links i ∈ I with y(i) ≥ τ are added to the network.2 τ ∈ [0, 1]
is called the addition threshold and is a parameter to be chosen
by the network operator. Let I∗τ := {i ∈ I : y(i) ≥ τ}
be the set of CLs that are selected under τ . The modified
problem instance is defined as I ′

τ := (G′,K ′,T, UT ), where
G′ = (V,A′), A′ := A ⊎ I∗τ , and K ′ = B ⊎ I∗τ . Notably,
K ′ ⊆ A′, i.e., there are no more innovative candidates in the
modified candidate set since the selected ICLs have already
been added to G′. The costs associated with adding those links
is given by F =

∑
i∈I∗

τ
ζ(i), which must be considered when

calculating the total costs of the expansion plan. At this point,
the shortest paths in the network are recomputed so that the
newly added links can be respected in the second stage. I ′

τ

is now used as input to the second-stage model. This link
selection step has an asymptotic time complexity of O(|I|).

C. Second Stage: Exact Capacity Upgrades

After the rounding procedure described in the previous
subsection, the candidate set no longer contains innovative
links. The goal of the second stage is to optimally expand
the links that are present in the topology. For exact capacity
upgrades under the 2SR paradigm, we follow the LP formu-
lation proposed in [11]. Since relative link loads for every
link can be precomputed when imposing a restriction on the
number of allowed segments, such models can be solved more
efficiently than more general models. For our second-stage
model, we adapt this idea, but change the objective function
and extend it with the ability to upgrade link capacities. Prob. 2
shows the LP formulation for the second stage. The routing
variable xk

u,v defines the volume of the u-v-demand for which
the segment k is installed. In contrast to the first-stage model,
the expansion variable λ(l) now specifies how many (integer)
modules of additional capacity are installed on any CL l. The
objective function (11) minimizes the total upgrade cost over
all CLs. (12) forces the entire u-v-demand to be split over
all possible 2SR paths. (13) ensures that the total traffic on
any link does not exceed the budget set by the utilization
threshold and the installed capacity, which is tracked by (14):
Non-candidate links have their capacities fixed at the original
volume, and CLs can be expanded with additional modules.

2This assumption is supported by the finding that 2SR and MCF often
achieve similar TE performance [9], [11].

min F +
∑
l∈K′

λ(l) · ξ(l) (11)∑
k∈V

xk
u,v ≥ tu,v ∀u, v ∈ V (12)∑

u,v∈V

∑
k∈V

gku,v(l) · xk
u,v ≤ UT · κ(l) ∀l ∈ A′ (13)

κ(l) =

{
c(l), l ∈ A′ \K ′,

c(l) + λ(l) · µ(l), l ∈ K ′ ∀l ∈ A′ (14)

κ(l) = κ(r(l)) ∀l ∈ A′ (15)

xk
u,v ≥ 0 ∀u, v, k ∈ V (16)

λ(l) ∈ N ∀l ∈ K ′ (17)

Prob. 2. Second-stage model of the TROPIC algorithm

Require: I = (G,K,T, UT ), addition threshold τ ∈ [0, 1]

▷ Compute addition degrees for ICLs
y ← FIRST-STAGE(I)

▷ Add promising ICLs to network and update candidate set
I∗ ← {i ∈ I : y(i) ≥ τ}, A′ ← A ⊎ I∗, K′ ← B ⊎ I∗

G′ ← (V,A′), I′ ← (G′,K′,T, UT )

Return result of SECOND-STAGE(I′)

Fig. 2. Pseudocode for TROPIC

Links from I that have been added during the post-processing
step are now considered as regular, expandable candidates.
(15) ensures that all links provide the same capacity in
forwards and backwards direction, as in the first stage. This
second optimization stage consists of O(|V |3) variables and
O(|V |2) constraints. Although the time complexity is super-
polynomial due to the integer variables (17), it can be solved
in acceptable time even for large instances, see Sec. VI-C.

Pseudocode for the entire TROPIC algorithm is shown
in Fig. 2. When the second-stage optimization finishes, the
objective value indicates the total cost of the expansion plan.
The final planning result can be extracted from the first- and
second-stage optimization variables. The addition plan y can
be obtained from the links in I∗, the upgrade plan λ from the
values of (17), and the routing policies from (16).

V. DATASET ACQUISITION

In order to empirically assess the efficacy of the TROPIC
algorithm, we require the network topology (Sec. V-A), a
traffic forecast for the planning horizon (V-B), and CLs with
associated upgrade capacities and costs (V-C). As a service
to the research community, we make our evaluation dataset
publicly available.3

A. Topologies

We base our evaluation dataset on TE problem instances
from the publicly available REPETITA dataset [5] which

3https://github.com/sys-uos/tropic-instances



Table I
REPETITA INSTANCES CONSIDERED IN THE EVALUATION

Identifier Name Nodes Edges

A DeutscheTelekom 30 110
B Digex 31 70
C CrlNetworkServices 33 76
D Bics 33 96
E BtNorthAmerica 33 142
F Xspedius 34 98
G Bellcanada 48 128
H Tinet 48 222
I HiberniaGlobal 53 160
J Tw 71 230
K GtsCe 141 376
L Cogentco 186 494

features various real-world network topologies (many of them
adopted from the Internet Topology Zoo [26]). Out of those,
we select a subset of topologies that we deem most repre-
sentative for ISP backbone networks. In order to be included
in our evaluation, a topology must (i) be marked with the
Internet Topology Zoo tags Type=COM, Backbone=1, and
Layer=IP, (ii) consist of at least 30 nodes, and (iii) have at
most 50% nodes with degree 1 as well as a 2-core size [27]
of at least 80%. Since the instances of the REPETITA dataset
are intended as input to pure TE problems, we modify them
to better represent the planning problem we wish to study
in this paper. In each topology, parallel links are merged,
i.e., capacities on all links between a given node pair are
aggregated onto a single link. Further, we collapse nodes that
are “unlocated”, i.e., those without geographic coordinates.
This is necessary as our expansion cost function is based
on the geodesic distance between two nodes. When a node
is collapsed, it is removed from the topology and its former
neighbors are connected in a clique-like manner. The traffic
demands originating at, or destined to the collapsed node
are redistributed onto the first and penultimate hop of the
Shortest Path Routing (SPR) path, respectively. As a final
modification, the link capacities are adjusted. In the original
instances, all links of a network have the same fixed capacity.
In real IP backbones, however, we expect “inner” links to have
larger capacities than links on the periphery. To simulate this,
we compute the link utilizations under an SPR. Capacities
of links that are utilized to more than 70% are expanded
such that they exactly fit that threshold. The final selection
of instances and their sizes after modification are listed in
Table I. The REPETITA dataset additionally contains 5 TMs
for each topology, which have been generated according to the
Random Gravity Model (RGM) [28]. As all TMs conform to
the RGM, we do not expect the choice of the initial TM to have
a significant impact on the results. Therefore, we arbitrarily
select one for each topology.

B. Traffic Projection

In the RGM, the magnitude of any entry tu,v in the TM
is proportional to the product of the magnitudes of the total
ingress at node u and the total egress at node v. Under

the assumption that the majority of traffic growth can be
attributed to an increase in residential customer IP traffic,
we believe that population growth models can be a suitable
approximation for demand growth in backbone networks. This
corresponds nicely to the idea of the RGM which is inspired
by trip distribution models developed in the social sciences
(e.g., [29]). There, a log-normal distribution is often used to
model city population growth [30], [31]. We also follow this
approach and parameterize a log-normal distribution to model
xgress volume growth rates for each Point of Presence. The
parameters µ and σ2 of the underlying normal distribution are
chosen according to a maximum-likelihood estimation based
on historical year-on-year busy-hour traffic growth rates [1],
[9]. This distribution is used to sample xgress growth rates for
each node, which are then translated back into traffic demands
according to the gravity model.

C. Candidate Links

In most cases, it is trivial to add more capacity to an existing
link by either injecting additional wavelengths into the fiber, or
by replacing a previous-generation optical module with a more
recent one. Therefore, we allow all existing network links to
be upgraded in our evaluation dataset; i.e., using the notation
introduced earlier, B := A. Regarding innovative candidates,
we only consider links with a maximum length of 500 km,
motivated by the approximate distance modern fiber-optical
hardware can span using erbium-doped fiber amplifiers [32].

1) Selection Heuristic: Since there is no a priori knowledge
about which candidate set size performs well, and to limit
the computational cost, we decide to bound the number of
allowed innovative candidates by the number of existing links,
i.e., |I| ≤ |A|. To make a selection from the set of potential
candidates, we developed the Diverse Shortest Paths Score
(DSPS) heuristic. Let σG(u) be the set of shortest paths that
run through node u in G. For two nodes u, v ∈ V , their DSPS
is defined as follows:

DSPS(u, v) := |σG(u) \ σG(v)| · |σG(v) \ σG(u)|

Our selection heuristic computes the DSPS for all node pairs
(u, v) ∈ V 2 \ A that are less than 500 km apart and ranks
them in a non-ascending manner. From this list, the first up to
|A| pairs are selected as ICLs. Intuitively, the DSPS heuristic
attempts to incorporate information from the existing IGP to
identify node pairs that connect different parts of the network.
Overall, in our dataset, the candidate set for any network G =
(V,A) can be written as K = A ⊎ I where |I| ≤ |A|.

2) Cost, Capacity, and Routing Weight: For each link in K,
we must also define an expansion capacity and the associated
expansion cost. For innovative links, an initial capacity and
addition cost must also be defined. We determine the capacity
provided by a single module by projecting the technological
advancement since the last planning cycle 5 years ago. We
assume that the median capacity of links in the base topology
corresponds to one module. The compound annual growth rate
of fiber-optical capacity sits relatively steady at 15% [33], [34].
The planning capacity we assume is therefore 1.155 ≈ 2 times
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Fig. 3. Cost functions used in evaluation dataset (after normalization):
costupgrade(l) 7→ l and costadd(l) 7→ ⟨(11.11 · l) for l ≤ 30; (11.11 · 30 +
(l − 30) · 2.22) for l > 30⟩. (Assume the length of a CL is given as l km.)

the median link capacity in the base topology. In order to
determine the associated expansion costs, we use two distance-
based cost functions: one for addition, and one for upgrade
costs. Fig. 3 plots both functions. They reflect the TCO of
adding one module of capacity at a given length. The addition
cost function consists of two linear segments to account for
the high bring-up costs of installing a new link at all.

The routing weights of added links are set to the median link
weight in the base topology. Since we use the unary-weighted
topologies of the REPETITA dataset (cf. Sec. V-A), innovative
candidates are always added with an IGP weight of 1.

VI. EVALUATION

Sec. VI-A presents the algorithmic parameters as well as the
hardware environment. In Sec. VI-B, we describe a baseline
algorithm to compare our results against. The evaluation
results are reported and discussed in Sec. VI-C and VI-D.

A. Hardware and Software Parameters

In our evaluation, we set UT = 0.7 for all instances.
TROPIC additionally requires specification of the addition
threshold τ (cf. Sec. IV-B). For our evaluation, we set τ = 0.5
with the intuition that at least half of an innovative link’s
capacity must be added in the first stage to justify adding
it to the network. We implemented TROPIC in C++ using
CPLEX [35]. The evaluation was performed on a machine with
an AMD EPYC 7452 processor and 250 GiB of memory. Both
algorithms are evaluated on all instances listed in Table I, each
with two candidate sets: one with only existing (OE) links, and
one additionally including ICLs as determined by the DSPS
heuristic (cf. Sec. V-C). For instance L, ICLs were also chosen
according to DSPS, however, due to memory constraints the
number of innovative links had to be reduced from 496 to 248.

B. Baseline Solution

In order to evaluate the performance of TROPIC, we require
a baseline solution to compare against. For this purpose, we
designed a greedy capacity expansion algorithm that is in line
with what a network planner would intuitively do by hand [36].
We call this algorithm GREEDYSPR-PLANNING (GSPR, see
pseudocode in Fig. 4). The idea is to iteratively introduce
additional capacity to the network in the most opportune
places. In every iteration, the next link to add capacity on
is determined by its value, relating the amount of removed
overutilization to the cost of removing it. The routing paths
in the network are never modified by GSPR, except when the
addition of an ICL changes the shortest-path set between node
pairs. The SPR includes equal-cost multi-path splitting.

Require: I = (G,K,T, UT )
while a link l with util(l) > UT exists do

m ← any MLU link in K
▷ A⊕ o: link set after candidate option o is applied
▷ Compute values of available candidate options
for all o ∈ {m} ∪ {i ∈ I : i not added already} do

Vo ← 1
cost(o)

·
(∑

l∈A,utilA(l)>UT
(utilA(l)− UT )

−
∑

l∈A⊕o,utilA⊕o(l)>UT
(utilA⊕o(l)− UT )

)
if Vm ≥ Vi for all i then

A ← A⊕m ▷ Minimally upgrade m and r(m)

else
i∗ ← argmaxi Vi

A ← A⊕ i∗ ▷ Add and min. upgrade i∗ and r(i∗)
Recompute SPR and link loads

Fig. 4. Pseudocode for GSPR
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Fig. 5. Normalized solution costs for instances in the REPETITA dataset

C. Results

Fig. 5 shows solution costs for the REPETITA instances.
To allow for easier cross-instance comparison, the costs have
been normalized to those of the GSPR-OE solution in each
topology. In addition to the baseline solutions, we have also
computed a lower bound for each instance. This bound is
derived by solving an exact version of TROPIC’s first stage for
the DSPS candidate set: link additions and expansions are in-
tegral, and added innovative links may be expanded after they
have been added. The demands are still routed according to an
MCF, which makes these solutions infeasible to implement in
real-world networks. Due to its computational complexity, this
lower-bound LP could not be solved to optimality for instances
J and L. For these instances, the reported lower bounds are
the best ones found by CPLEX before running out of memory.
Similarly, for instance L, TROPIC’s costs and solve times refer
to solutions with an optimality gap of less than 2%.

All but the three largest instances can be solved by TROPIC
in under 1 hour. Instance J requires a solve time of 4 days
with the DSPS candidate set, whereas K and L took roughly
30 days. GSPR is much faster, requiring at most 1 hour even on
the largest instances. The cost reductions offered by TROPIC
range between 25% and 68%, with the majority located in
the region between 40% and 60%. Allowing ICLs improves
TROPIC’s solution quality in 5 of 12 instances. Importantly,
in all instances, the costs never increase through the inclusion
of innovative candidates. This is in sharp contrast to GSPR,
where enlarging the candidate set can significantly degrade the
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solution quality, e.g., in instances B and L. This is an attractive
property of TROPIC: An operator can provide a large set of
CLs without concern for the deterioration of solution quality.

Fig. 6 depicts the addition degrees of innovative links in
each DSPS solution. For the TROPIC solutions, this refers to
the y(i) values after the first stage. For the GSPR solutions,
we interpreted innovative links to have a degree of 1 if they
were added in some iteration of the algorithm, and 0 if not.
The total number of added links can be obtained by summing
all numbers above the threshold line. We see that TROPIC
is much more conservative at adding innovative links than
GSPR, especially in the larger instances J and L, but also in
the smallest instance A. We argue that there are two possible
reasons why TROPIC uses innovative links so infrequently:
(i) The candidate strategy yields a suboptimal selection of
innovative links, or (ii) the initial topology already includes
all worthwhile links and there are no valuable links left to be
added. In contrast, GSPR adds links quite optimistically. This
reveals a key weakness of the greedy approach: It is unable to
distinguish locally-good from globally-good innovative links.
The MCF-based first stage of TROPIC, on the other hand, does
not appear to suffer from the same problem: If innovative links
are used in a TROPIC-DSPS solution, the resulting solution
costs are always less than the corresponding TROPIC-OE
solution (cf. Fig. 5). We consider this an indication that the
MCF-based first-stage heuristic works well in the context of
selecting promising links for 2SR. This is further backed up by
the deviations of the TROPIC-DSPS costs from the computed
lower bounds. The largest deviation from the bound is found
in instance K, where the lower bound is 0.143 below the
normalized cost of the solution found by TROPIC. In nearly
all other instances, the solutions produced by TROPIC come
exceedingly close to or even achieve the lower bound. This
impressively illustrates the effectiveness of 2SR for TE as well
as the heuristic quality of the MCF-based first stage.

Finally, it is worth noting that the number of links added by
TROPIC does not only depend on the values y(i) in the first
stage, but also on τ . Fig. 6 gives a rough indication of how
the number of added links would change with different values
for τ . For most instances, no large changes would occur as
long as τ > 0. This implies that TROPIC is relatively robust

towards τ , except for extremely large or small values.

D. Discussion

1) Baseline Solutions: Ideally, TROPIC should be com-
pared to other sophisticated capacity planning approaches
(cf. Sec. II). Unfortunately, there are no publicly available
implementations of these approaches, and reimplementing
them from scratch is not feasible in the context of this paper.
Therefore, we use GSPR as a baseline approach as it mimics
a network evolution process still considered best practice [36].
It can be argued that GSPR is an unfair point of comparison as
only SPR is used instead of the more powerful 2SR available
to TROPIC. To address this, we also investigated G2SR; a
greedy algorithm which computes an MLU-optimal 2SR plan
for every expansion option before making the greedy choice.
Although G2SR can achieve moderate cost improvements over
GSPR, its solutions are still substantially more expensive than
those produced by TROPIC. Crucially, we observed that G2SR
does not scale well with instance size. For example, even on
the smallest DSPS instance of our dataset (instance A), G2SR
requires 53 min (!) to produce a solution with a normalized
cost of 0.77. In comparison, GSPR takes 1.7 sec for a cost of
0.94, and TROPIC takes 9.6 sec for a cost of 0.31. Based on
these and similar initial results, we decided not to investigate
G2SR any further and focused on TROPIC.

In this context, we stress the importance of the lower-bound
solutions discussed in Sec. VI-C. Although we do not have
reference costs of other state-of-the-art approaches, the median
cost degradation of TROPIC to the lower bound is just 4.9%,
and in many cases, nearly 0% (thus quasi-optimal, cf. Fig. 5).

2) Candidate Link Sets: All reported results refer to a
specific candidate set (in our case, either DSPS or OE). It
can not be ruled out that there may be candidate sets on
which a given algorithm performs better or worse than on the
studied sets. However, since there are on the order of O(2|V |2)
possible candidate sets, it is infeasible to compute solutions
for all of them on larger instances. In the evaluation, the DSPS
heuristic was used to find ICLs, but other strategies may be
conceived. A broader investigation may be part of future work.

Additionally, in a real-world scenario, many links might
not be considered as candidates due to external factors, e.g.,



topographical constraints, vendor compatibility, or legal re-
strictions. The model proposed in Sec. III-B already allows
arbitrary links to be excluded from K, providing network
operators with full flexibility to capture the specific limitations
of their networks. While it is not possible to add such
constraints to the REPETITA instances due to limited public
data, it is important to stress that operators would be able to
use knowledge about their own networks in order to determine
viable candidates in a real-world use case.

3) Solve Times: While TROPIC mostly computes its solu-
tions in less than 1 hour, up to 30 days of computation time can
be required for the largest instances K and L (cf. Sec. VI-C).
Even though this number is quite large, it does not impose
a meaningful limitation regarding the suitability of TROPIC
for its intended use case of long-term capacity planning. In
this context, we are generally considering planning horizons
of multiple years. Furthermore, solve times also depend on
the respective candidate set K. In particular, shrinking K can
considerably reduce computation times (at the potential cost
of reduced solution quality).

VII. CONCLUSION

Cost-efficient network expansion is one of the most delicate
problems concerning today’s network operators. It has proven
beneficial to explicitly consider the routing of demands in
the future expanded network, but existing approaches do not
make use of state-of-the-art SR-TE techniques or are infeasible
to implement in practice. In this paper, we introduced the
problem of cost-effectively expanding IP networks while em-
ploying a 2SR scheme that should be implementable in most
modern backbones. Since solving the problem is NP-hard, we
propose TROPIC; a heuristic algorithm that simultaneously
considers SR-TE and network expansion through capacity
upgrades and link additions. In an extensive evaluation using
representative network topologies derived from the publicly
available REPETITA dataset, we show that, despite its heuris-
tic nature, TROPIC is able to considerably outperform baseline
algorithms, enabling cost savings in the range of 40–60%. For
most instances, it even comes close to a theoretical lower
bound. These findings not only demonstrate the capabilities
of our TROPIC approach, but more generally underline the
importance of considering the objectives of network expan-
sion and TE jointly, instead of treating them as independent
problems, as is still common practice to date. Hence, our future
work will involve a detailed analysis of further real-world
constraints, e.g., the robustness to uncertain traffic projections,
limited demand splitting, or reducing the number of required
SR policies.
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