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A B S T R A C T

Many state-of-the-art Segment Routing (SR) Traffic Engineering (TE) algorithms rely on Linear
Program (LP)-based optimization. However, the poor scalability of the latter and the resulting
high computation times impose severe restrictions on the practical usability of such approaches
for many use cases. A promising way to address these issues is to preemptively limit the number
of SR paths considered during optimization by employing certain preprocessing strategies. In
the first part of this paper, we conduct an extensive literature review of such preprocessing
approaches together with a large-scale comparative performance study on a plethora of real-
world topologies, including recent data from a Tier-1 Internet Service Provider (ISP). In the
second part, we then use the insights gained from the former study to develop a novel combined
preprocessing approach which also guarantees to not interfere with the satisfiability of practically
important latency bound constraints. Our approach is able to reduce the number of SR paths
to consider during optimization by as much as 97-99%, while still allowing to achieve close
to optimal solutions. This facilitates an around 10× speedup for different LP-based SR TE
algorithms, which is more than twice as good as what is achievable with any of the previously
existing methods. Finally, we also study the applicability of the path preprocessing paradigm to
the use case of tactical TE, showing that it facilitates an around 37% speedup in this context as
well. All in all, this constitutes a major improvement over the current state-of-the-art and further
facilitates the reliable use of LP-based TE optimization for large segment-routed networks.

1. Introduction
SR has become a premier choice for TE purposes in large networks. It offers great traffic steering capabilities while

simultaneously offering good scalability. However, in order to use SR to its full potential, optimization algorithms are
needed to compute the best possible TE configurations. In many state-of-the-art approaches (e.g., [2], [3], or [4]), this is
done using LP-based optimization because it can provide guaranteed optimal solutions. Its major drawback, however,
is its limited scalability and the resulting high computation times for larger networks. Depending on the algorithm and
the size of the network, those can reach up to multiple hours or even days. For certain use cases, this is acceptable but,
for many scenarios, such high computation times severely limit the practical usability of LP-based SR TE algorithms.

Over the recent years, a variety of preprocessing approaches have been proposed that aim to reduce the problem
complexity and, thus, the resulting computation time by preemptively limiting the number of SR paths to consider
during optimization. The corresponding research landscape, however, appears to not be well-formed yet, featuring
mostly disjoint research efforts (see Section 3). Furthermore, while the individually reported results for those
approaches look promising, evaluations are often carried out on a rather limited set of data and varying hardware. This
raises questions regarding the generalizability of the results and makes it virtually impossible to compare approaches
against each other to select the best fitting one.

In this paper, we aim to address these problems by thoroughly discussing, examining, and evaluating the existing
works in the area of SR path preprocessing. Based on this, we then propose a combination of multiple different
preprocessing concepts and show that the latter can be used to considerably improve the performance and reliability
compared to existing approaches. Thereby, we make the following three major contributions:
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• We provide the first extensive literature review of existing preprocessing concepts, discussing their individual
merits and potential shortcomings. This is further complemented by a large-scale comparative performance study
of these approaches, using not only various publicly available topologies from the Repetita dataset [5] but also
recent network data from the backbone of a globally operating Tier-1 ISP.

• Based on the insights gained from these examinations, we then propose a novel combined preprocessing
approach. It facilitates an up to 10× speedup for different SR TE algorithms with only minor deteriorations in
solution quality, thereby being more than twice as good as previously existing techniques. Additionally, it is also
the first preprocessing concept that guarantees to not negatively interfere with the satisfiability of latency bound
constraints, which is a crucial property for a practical deployment. Overall, this constitutes a major improvement
over the current state-of-the-art and an important step towards the reliable usability of LP-based TE optimization
for large segment-routed networks.

• Finally, we also are the first to study the applicability of SR path preprocessing concepts to heuristic optimization
algorithms for the use case of tactical TE. In this context, we show that, while the achievable performance gains
are considerably lower than for LP-based optimization, path preprocessing can still speed up a state-of-the-art
tactical TE heuristic by around 37.5% on average without having a negative impact on the solution quality.

The remainder of this paper is structured as follows. First, Section 2 introduces fundamental concepts and
background knowledge relevant for the understanding of this paper. After this, we motivate the need for an extensive
literature review and performance study of existing SR preprocessing concepts in Section 3 by identifying and
discussing issues in the corresponding research landscape. The respective literature review and performance study is
then conducted in Section 4. Based on the latter, Section 5 proposes and examines the possibility to combine multiple
preprocessing approaches to further improve performance. This is followed by a study on how to incorporate practically
important latency bound constraints into the combined preprocessing approach (Section 6) and an examination of its
applicability to the use case of tactical TE (Section 7). Finally, the paper is wrapped up by a discussion of possible
limitations of our study (Section 8) before recapitulating on its most important contributions and findings, as well as
providing an outlook on possible future research directions in Section 9.

2. Background & Related Work
This section briefly introduces the most important concepts and background information relevant for the under-

standing of this paper.

2.1. A Primer on Segment Routing and its Applications for Traffic Engineering
SR [6] is a network tunneling technique that implements the source routing paradigm. Its key feature is the

possibility to add specific labels (also called segments) to a packet, which function as waypoints that the packet has to
visit in a given order before heading to its original destination. In practice, these detours are implemented on the level
of individual demands using so-called SR policies that specify the SR path the respective demand should be routed over
by defining a list of segments (i.e. waypoints) to add to the packet. Depending on the nature of the related waypoint,
different segment-types are used. For example, node segments refer to routers, while adjacency segments identify
individual links. The forwarding paths between the waypoints are determined by the Interior Gateway Protocol (IGP)
of the respective network. Overall, SR enables the definition of virtually arbitrary forwarding paths and allows for a
precise, per-flow traffic control. For this reason, SR has become one of the premier choices for TE and there is a large
body of work regarding SR in general and its applications for TE in particular (cf. e.g., [7]).

One of the fundamental works in the SR TE landscape is [2]. Here, the authors propose an LP-based optimization
model that builds the foundation for many subsequent works. With it, they show that even SR with just two node
segments (2SR) already enables virtually optimal TE solutions in many scenarios. A slightly adapted version of the
respective 2SR LP formulation is shown in Problem 1. The objective is to minimize the Maximum Link Utilization
(MLU) denoted by 𝜃. The variables 𝑥𝑘𝑖𝑗 indicate the percentage share of the demand 𝑡𝑖𝑗 between nodes 𝑖 and 𝑗, that
is routed over the intermediate segment 𝑘. Equation (2) ensures that each demand is satisfied. Equation (3), is the
so-called capacity constraint. For every edge 𝑒, 𝑔𝑘𝑖𝑗(𝑒) indicates the load that is put on 𝑒 if a uniform demand is routed
from 𝑖 to 𝑗 over the intermediate segment 𝑘. These values are constants and can be efficiently precomputed. All in
all, the left side of the constraint denotes the traffic that is put on 𝑒 by the SR configuration represented by the 𝑥𝑘𝑖𝑗 .
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min 𝜃 (1)

s.t.
∑

𝑘
𝑥𝑘𝑖𝑗 = 1 ∀𝑖𝑗 (2)

∑

𝑖𝑗
𝑡𝑖𝑗

∑

𝑘
𝑔𝑘𝑖𝑗(𝑒) 𝑥

𝑘
𝑖𝑗 ≤ 𝜃 𝑐(𝑒) ∀𝑒 (3)

𝑥𝑘𝑖𝑗 ∈ {0, 1} ∀𝑖𝑗𝑘 (4)

Problem 1: 2SR formulation (inspired by [2]).

This is then limited to the edge’s capacity 𝑐(𝑒) scaled by 𝜃. By minimizing this scaling factor, a SR configuration with
minimal MLU is computed. The only difference to the original LP of [2] is that there the 𝑥𝑘𝑖𝑗 variables were continuous,
allowing for demands to be split arbitrarily across various SR paths. However, such an arbitrary splitting is not feasible
in practice [4]. Therefore, newer variations of the 2SR LP generally prohibit splitting demands over multiple SR paths
by making the 𝑥𝑘𝑖𝑗 binary variables (cf. e.g., [8] or [4]).

A recent innovation in the SR landscape is the Midpoint Optimization (MO) concept [3, 9]. Demands no longer
have to be optimized individually by deploying dedicated end-to-end SR policies. Instead, a single SR policy can be
used to detour a whole set of demands. MO allows for a substantial reduction of the number of SR policies that need
to be deployed to implement TE solutions, lowering the configuration effort and overhead in the network. However,
the optimization problem becomes inherently more complex, resulting in considerably higher computation times.

2.2. Speeding up SR TE Optimization
A major challenge in the context of SR TE is the scalability of the used optimization algorithms. While LP-based

approaches offer the major advantage of providing provable optimal solutions, they scale rather poorly with network
size. For small to medium-sized networks, this is no issue since solutions can still be computed within seconds or at
most minutes. However, for large networks (e.g., WANs or ISP backbones), computing TE solutions with LPs can take
multiple hours or more (cf. [4]), while, in practice, solutions might be needed on a timescale of just a few minutes (cf.
[10, 11]). There are different ways to approach these issues. Some focus on the use of advanced mathematical concepts
like column generation [12] or constraint programming [10], while others try to deploy meta-heuristics to compute
reasonable good solutions within really short time spans (e.g., [13] or [14]).

A completely different approach to bring down the complexity and, hence, computation time of SR LPs focuses on
preprocessing the set of SR paths to consider during optimization. Each SR path basically consists of the source
and destination node of the packet as well as a set of middlepoints1 (the node segments) that it has to visit (cf.
Section 2). In basically all SR LP formulations (e.g., in Problem 1), the model allows for every node segment to be
used as a middlepoint for each traffic demand (aka. source-destination pair). While this guarantees optimality, it also is
responsible for a large portion of the overall problem complexity. For every demand, the optimization has |𝑉 |

𝑘−1 paths
to choose from, resulting in a total number of (|𝑉 |

𝑘+1) possible SR paths to evaluate, with |𝑉 | being the number
of nodes in the network and 𝑘 the maximum number of segments per path. Here, the preprocessing (or also called
middlepoint selection [15]) approaches come into play and try to reduce this complexity by limiting the set of available
middlepoints per demand and, thus, the set of SR paths to consider prior to optimization. This results in smaller and
generally faster to solve LPs.

3. Motivation: Issues of the SR Path Preprocessing Research Landscape
While there already is a plethora of different SR preprocessing concepts proposed in the literature [8, 15, 16, 17, 18,

19, 20, 21], the overall research landscape faces certain problems that negatively impact both the practical applicability
of the respective approaches as well as further progress in this area.

Problem 1: The SR path preprocessing research landscape is rather disjointed. Despite there already being a
plethora of different SR path preprocessing approaches, the respective research area is not really well-formed yet. This
mainly becomes apparent by the fact that research efforts are mostly carried out completely independent of one another,

1The term “middlepoint” used in the remainder of this paper is not to be confused with the term “midpoint” from the MO concept (Section 2).
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Table 1
Overview and comparison of existing work dealing with path/policy preprocessing concepts for SR TE optimization.

Compares against ... Eval. Setup

Centrality-
based

Stretch-
Bounding

Demand
Pinning

Smart Node
Selection

Policy Domination
& Equivalency

Number of
Topologies

(Partially) with
Real Traffic

[16, 15] O ✗ ✗ ✗ ✗ 2 ✗ (0)
[17, 18] ✓ O ✗ ✗ ✗ 6 ✓ (1)
[19] ✓ ✓ ✗ O ✗ 4 ✓ (2)
[8] ✗ (✓) ✗ ✗ O 260* ✗ (0)
This Work ✓ ✓ ✓ (✓) ✓ 91 ✓ (19)
*The majority of those topologies are from rather old and small networks (e.g., the Arpanet) and, thus, do not reflect the size and characteristics
of modern large-scale networks anymore. Furthermore, due to their small size, most of those instances are generally solvable within milliseconds
even when just using standard LP-based optimization, rendering an additional preprocessing step basically obsolete.

with authors being more or less fully unaware of other works in this area. Not only are newly proposed preprocessing
concepts seldomly compared and evaluated against already existing ones (see Table 1), but the latter are often not even
discussed as related work. As a result, there is no direct comparison between the different approaches, which makes it
difficult for potential users to select the best suited one for their use case. Furthermore, such a disconnected research
landscape not only makes it more difficult to learn and benefit from others findings, but even leads to duplicate work
being done due to already existing concepts being independently “re-invented” (i.e. [8, Sec. 6.6] basically re-proposing
a concept similar to the stretch-bounding approach of [17]).

Problem 2: Cross-comparisons are further limited by the heterogeneity of the evaluation setups. With there being
virtually no direct comparative examinations between the different preprocessing concepts, one currently has to rely on
(roughly) cross-comparing the evaluation results of different publications in order to judge the quality and performance
of the respective approaches. This, however, is substantially complicated by the fact that basically all publications use
different hardware and datasets, with the latter not only varying heavily in size but also in network characteristics.

Problem 3: Evaluations are mostly carried out in an exemplary and rather rudimentary fashion. While some
works (e.g., [8]) feature an extensive evaluation on a large set of different networks, others (e.g., [15], [18], or [19]) only
test their approaches on a very limited number of networks (see Table 1). Even though their results look promising, the
sample size is probably far to low to draw meaningful conclusions regarding the generalizability of the results to other
networks. Furthermore, basically all evaluations are carried out on (semi-)artificial data, like the Repetita dataset [5]
which features topologies based on real-world networks but related traffic matrices are fully artificial (cf. Section 4.1.1).
Even if full-on real-world data2 is used (e.g., from the Geant network in [18]), it is rather old and mostly from research
networks which do not feature the same characteristics as large ISP backbones. Hence, it is unclear whether the results
obtained on such data are directly transferable to a practical application in large commercial networks. And lastly,
while some approaches (e.g., Demand Pinning (DP) [20, 21]) sound very promising in theory, there are no evaluation
results reported in the literature, at all.

Solution: Extensive Literature Review & Comparative Performance Study. All these aspects constitute limiting
factors when it comes to a practical application of such SR preprocessing concepts, while also hampering further
research progress in this area. Especially the latter requires a solid understanding and assessment of existing work,
based on which those approaches can then be further refined or completely new concepts can be developed. Thus, in
the following, we aim to address the above-mentioned problems by conducting the first extensive literature review of
existing SR path preprocessing concepts, complemented by a large-scale comparative performance study of the latter
on a plethora of different problem instances, including recent real-world data from a globally operating Tier-1 ISP (see
Table 1). We believe that this can serve as a valuable reference point lying a solid foundation for future research in this
area by not only clearly charting the existing research landscape but also examining and comparing existing work in
terms of its performance. In fact, we even demonstrate this by utilizing the insights gained from this study to propose
a novel combined preprocessing approach that outperforms all existing ones by at least 2× regarding the achievable
speedup, while also taking practically highly relevant latency requirements into consideration (see Sections 5 and 6).

2Meaning topology and traffic data obtained from real operational networks.
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Table 2
Graph properties of the topologies in the two datasets used for evaluation.

Repetita (72 Topologies) ISP (19 Topologies)
min max avg stdDev min max avg stdDev

Nodes 40 197 68.69 31.81 108 186 143.11 29.90
Edges 86 486 171.94 77.31 660 1064 897.16 136.25
Density [%] 1.26 7.82 4.30 1.48 3.09 6.57 4.73 1.35
Diameter 4 35 11.79 7.57 6 8 7.32 0.58

4. SR Path Preprocessing – Extensive Overview & Comparative Performance Evaluation
In the following, we provide a detailed overview on (to the best of our knowledge) all existing preprocessing

concepts in the SR TE literature, complemented by a comparative performance study of the respective approaches.
In doing so, we focus on preprocessing concepts that primarily aim at reducing computation time and also are (more
or less) universally applicable in most large-scale networks (i.e. WANs or ISP backbones). Other, domain-specific
approaches that, while also implementing some form of path selection or preprocessing, are only applicable to quite
niche use cases or applications (i.e. Deterministic Networking [22]) are out of scope and will not be considered here.

4.1. Evaluation Setup
Similar to the related work, we evaluate the effectiveness of the preprocessing approaches based on the 2SR LP

(Problem 1). It is the de-facto standard LP for SR TE and builds the foundations for a wide body of derivative work
(cf. Section 2) to which the findings should be transferable. Our evaluation focuses on the resulting MLU deterioration
and the achievable speedup compared to the standard 2SR implementation. In this context, the speedup factor is used
to characterize the performance improvements regarding computation time achievable with the different preprocessing
approaches. As such, it is calculated by dividing the computation time 𝑇𝑑𝑒𝑓𝑎𝑢𝑙𝑡 required by the default algorithm
(without any preprocessing) by the computation time of the same algorithm  when the respective preprocessing
approach 𝑝 is applied beforehand (including the computation time of the respective preprocessing):

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝐹𝑎𝑐𝑡𝑜𝑟(𝑝, 𝐴) =
𝑇𝑑𝑒𝑓𝑎𝑢𝑙𝑡()
𝑇 (𝑝())

(5)

Lastly, all computations are carried out on the same 64-core 3.3GHz machine with around 500GB of RAM and
using CPLEX 20.1.0 [26] as LP-solver.

4.1.1. Data
We carry out our evaluation on two sets of data. The first one consists of data from the publicly available Repetita

dataset [5]. It features topologies of real-world networks (mostly WANs or ISP backbones) collected in the Internet
Topology Zoo [27] and artificially generated traffic matrices (using a random gravity model [28]) for each topology.
In addition to that, each topology also comes with two sets of IGP metrics (unary and inverse capacity). However, we
limit our evaluations to only the unary metric set as previous results [29] have shown that the impact of different metric
designs on SR performance is often negligible. Other results further indicate that SR middlepoint selection approaches
also seem to be quite robust regarding the underlying metric (cf. e.g., [18]). We further discard all instances already
solved optimally by Shortest Path Routing (SPR). Finally, since for smaller networks with just a couple tens of nodes,
even rather complex LPs are generally solvable within seconds or less (cf. e.g., [30]), there is basically no practically
relevant improvement to achieve for these networks. Therefore, we limit our evaluations to larger networks with at least
40 nodes, leaving us with a total of 72 networks featuring 40 to 197 nodes and around 85 to 500 edges (cf. Table 2).

Complementary to the Repetita data with artificial traffic, we also carry out evaluations on a second set of data
collected from the backbone network of a globally operating Tier-1 ISP. It features 19 topology snapshots that resemble
different expansion states of the network between 2017 and 2021 and a real traffic-matrix collected during the peak-
hour of the respective day. Table 2 lists some further information on the most important graph properties across the
respective topologies in each of the two dataset used in our evaluation. In this context, parallel links are counted as a
single edge and the density denotes the ratio of (non-parallel) edges in the graph relative to a complete one.
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4.1.2. A Primer Regarding CPLEX-Related Outliers
In rare occasions, there can be outliers with a speedup factor below one (e.g., in Figure 2c for 𝛼𝐷𝑃 = 0.3 for the

ISP data). This means using the respective preprocessing approach actually resulted in an increase in computation
time. While this is rather surprising at first thought, there is a simple explanation for this phenomenon. LP-solvers like
CPLEX stop optimization only if they find a “proof” that the currently best solution is truly optimal (or within a small
margin to the optimum). This optimality gap is computed by comparing the currently best found solution against a
lower bound for the best possible objective value which is continuously updated (increased) during optimization. If the
gap between the lower bound and the best found solution is sufficiently small, the solution is considered to be optimal.
By preemptively limiting the allowed set of available SR paths, the rare scenario can occur in which we prohibit a path
that might not be required for an optimal solution but that facilitates a quick proof of optimality. There might be other
options for such a proof but if these are explored in a much later stage of the branch-and-cut search, proving optimality
and, thus, the whole optimization process might take substantially longer.

While the possibility of actually degrading performance when applying preprocessing approaches might be
concerning, there is a straight-forward solution. Increasing the allowed optimality gap of CPLEX by only a small
amount allows for an easier proof of “optimality” (even without the paths excluded by the preprocessing). In our
experiments, increasing the optimality gap from the default 10−4 to around 10−3 proved promising to resolve these
issues without having a practically relevant negative impact on the solution quality. Solutions are still within 0.1%
(instead of 0.01%) of the optimum. In the context of practical deployments, such minute differences are basically
negligible since traffic, while mostly being quite stable, is still subject to small ongoing variations. Those (most likely)
cover up such marginal MLU differences.

4.2. Centrality-based Approaches
One of the first works that came up with the idea of preemptively limiting the number SR paths that are considered

for optimization are [16, 15]. They only allow a certain subset of nodes as middlepoints (aka. intermediate segments)
for SR paths and propose to use graph centrality metrics to select “important” or “central” nodes into this subset. This
idea is evaluated in the context of datacenter networks and ISP backbones for various subset sizes and with different
centrality measures. It is observed that, out of all considered centrality metrics, selecting the allowed middlepoints
based on their Group Shortest-Path (GSP) centrality [23] performs best. For a group of nodes  the GSP centrality is
defined as:

𝐶𝑔𝑠𝑝() =
∑

𝑠,𝑡∈𝑉 |𝑠,𝑡∉

𝜃𝑠𝑡()
𝜃𝑠𝑡

(6)

with 𝜃𝑠𝑡 denoting the total number of shortest paths from 𝑠 to 𝑡 and 𝜃𝑠𝑡() being the number of shortest paths from 𝑠
to 𝑡 that include any node in  [15]. In other words, it characterizes how “central” a group of nodes is based on the
number of shortest paths that run through this group.

Overall, it is shown that, when focusing on only a small number of nodes as available middlepoints, computation
times can be substantially reduced. However, this comes at the prices of a considerable deterioration in solution
quality. While the authors argue that this can be a sensible trade-off to make, in practice, an MLU deterioration is only
acceptable up to a certain point. Furthermore, limiting the available middlepoints to the same small set of nodes for all
demands can result in severe violations of certain operational latency constraints (i.e. from service level agreements).
For example, if, for a globe-spanning network, the most “central” nodes are all located in Europe, intra-US traffic either
needs to always follow its shortest path or be detoured all the way over a node in Europe, most likely exceeding latency
bounds. In addition to that, if the number of SR paths grows larger and they are all forced over the same handful of
middlepoints, this can put additional burden on the routing hardware of these nodes.

Implementation Details: We limit our evaluation of the centrality-based middlepoint selection approaches to the
GSP centrality as it was identified as performing best in previous works (cf. Section 4.2). To get around the issues
regarding the high algorithmic complexity of its computation [15] (and the resulting high computation times), we use
an approximation algorithm provided by NetworKit5 which approximates the node group with maximum centrality
up to a given accuracy 𝜖. Such an approximation would (most likely) also be used in a practical deployment due to
the substantial performance gains. For our evaluations, we use 𝜖 = 0.005 which allows for computing the respective
maximum centrality group in a couple of seconds for most instances.

5https://networkit.github.io/
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Evaluation Results
The evaluation results regarding the MLU deterioration and the achievable speedup for the centrality-based

middlepoint selection are depicted in Figures 1a and 2a, respectively. The orange boxplots resemble the respective
distributions for the Tier-1 ISP dataset and the blue boxplots for the Repetita dataset. For both of these datasets, it
can be seen that allowing only a small set of nodes as available middlepoints can result in a substantial (i.e. 10–20×)
speed-up in computation time. This, however, comes at the price of a significant deterioration of the overall solution
quality. In the worst cases, MLUs increase by up to 45% for the ISP dataset and by more than 80% for the Repetita
instances. By increasing the number of allowed middlepoints, these MLU deteriorations can be reduced but this also
results in an increase in computation time. Ultimately, operators have to make an individual decision regarding the
acceptable trade-off between speedup and resulting MLU deterioration. This might vary for different use cases, but
from our experience, the highest acceptable MLU deterioration for many scenarios probably lies somewhere around
10-15%, at most. Based on this, we highlight in each plot the parameter configuration that produces the highest speedup
while still allowing for, in our experience, practically usable MLUs. For the Repetita data this is at around 40% of
the total nodes being allowed as middlepoints, respectively. For the ISP instances, the box and whiskers are already
below the 10% deterioration threshold earlier (i.e. at just 3%). However, since the dataset only comprises 19 instances,
the three “outliers” that (considerably) surpass this threshold still make up over 15% of the dataset. To improve the
solution quality for these instances, a substantially higher percentage of allowed middlepoints is needed (i.e. around
45%). Hence, we argue that the number of middlepoints required to obtain practically usable solutions is (to some
extent) instance-dependent but, in general, selecting at least 40-45% of nodes as available middlepoints seems to be
required to still obtain good solutions. This translates to an average speedup factor of around 3-4 for both the Repetita
dataset and the ISP backbone (cf. Figure 2a). It has to be noted, however, that for these parameterizations there is still
a non-negligible number of instances with a significant MLU deterioration left.

Overall, our results generally confirm the findings of [15]. Selecting only a few central nodes as available
middlepoints can substantially reduce computation times, but also results in significant deteriorations of the overall
MLUs, especially when only allowing a small numbers of middlepoints to be used.

4.3. Stretch-Bounding
Another early middlepoint selection approach is the Stretch-Bounding (SB) concept proposed in [17, 18]. Its key

idea is to rule out all nodes from being a potential middlepoint for an SR path if they are “too far away” from its source
or destination regarding a given metric. This can be formalized as only considering middlepoint 𝑚 for an SR path
between 𝑠𝑟𝑐 and 𝑑𝑠𝑡 if the following equation is satisfied:

𝐷𝐼𝑆𝑇 (𝑠𝑟𝑐 → 𝑚) +𝐷𝐼𝑆𝑇 (𝑚 → 𝑑𝑠𝑡)
𝐷𝐼𝑆𝑇 (𝑠𝑟𝑐 → 𝑑𝑠𝑡)

≤ 𝛼𝑆𝐵 (7)

with the 𝐷𝐼𝑆𝑇 () function denoting the shortest path distance between the respective two nodes and 𝛼𝑆𝐵 ∈ [1,∞]
being the so-called SB factor. This approach rules out all those SR paths that are more than 𝛼-times longer than the
shortest path between the respective source and destination. It is shown in [18] that there is a trade-off between speedup
and deterioration of solution quality depending on the chosen 𝛼-value. The authors define a factor of around 𝛼𝑆𝐵 = 1.4
as the sweetspot of achieving close to optimal results while still considerably speeding up computations by a factor
of 3 to 4. However, the SB implementation as described in Equation 7 inherits an issue that can negatively impact
performance in certain scenarios (first pointed out in [8]). If the initial shortest path length is small (e.g., for paths with
just one or two hops), small 𝛼-values can completely prohibit any kind of detour for the respective demand. The best
example for this is a simple hop-count metric. If the shortest path of a demand has length 1 (one hop), this means that
for all 𝛼𝑆𝐵 < 2, there are no detours available for this demand as every detour would have at least length two. This can
negatively impact the achievable MLU.

A rather similar concept to the SB approach of [17] was also proposed in [24], where nodes are assigned
geographical tags on three different levels of granularity (site, country, and continent). SR paths between nodes
that share a common tag value (e.g., US for the country-tag) are restricted to only use middlepoints with the same
tag value (e.g., only nodes also located in the US). This also implements the idea of limiting the length of SR detours
to a sensible maximum (e.g., by not routing traffic between Boston and New York over Europe).

Implementation Details: We implement the SB approach mentioned issues regarding demands with very low
shortest path lengths. For this, we allow each demand with a shortest path length of just one hop to be rerouted over
arbitrary paths with two hops (irrespective of the chosen 𝛼-value). This turns out to be sufficient to resolve most of the
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(c) Demand Pinning

Figure 1: MLU deterioration for different preprocessing approaches. (A few very large outliers were cut off for better
readability.)

1 3 5 10 15 20 25 30 35 40 45 50 60 70

Percentage of Nodes Selected as Middlepoints

0

5

10

15

20

25

S
p

ee
d

u
p

F
ac

to
r

ISP

Repetita

(a) Centrality-based

1.
0

1.
02

5

1.
05

1.
07

5

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

2.
5

3.
0

SB Factor

0

5

10

15

20

25

S
p

ee
d

u
p

F
ac

to
r

ISP

Repetita

(b) Stretch Bounding (extended)

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

DP Alpha

0

5

10

15

20

25

S
p

ee
d

u
p

F
ac

to
r

ISP

Repetita

(c) Demand Pinning

Figure 2: Achievable speedup for the 2SR optimization. (A few very large outliers were cut off for better readability.)

respective issues without significantly increasing the overall number of SR paths to consider during optimization. The
same was also observed in [8].

Evaluation Results
In Figures 1b and 2b, it can be seen that, for the ISP dataset, near optimal results are achieved with a SB factor of

just 1.05. For a factor of 1.1, there is basically no noticeable MLU deterioration anymore while still achieving a 4-5×
speedup. For the Repetita dataset, the results differ noticeably. Here, such low SB factors result in a substantial MLU
deterioration of around 40% on average and over 80% at max. Practically usable results can be achieved with a SB
factor of 1.5 or higher and (virtual) optimal results require a factor of around 2.0. This translates to an around 4.5× and
2× speedup, respectively.

At first glance, it might seem like the SB approach performs substantially worse for the Repetita dataset. This
observation, however, is (at least a bit) deceptive. While, for low SB factors, the MLU deterioration on the Repetita
dataset is substantially higher, the speedup is also much better. The reason for this is that for the same SB factor, the
overall number of prohibited SR paths is much higher for the Repetita dataset. For example, for a SB factor of 1.1,
around 90% or more of all available SR paths are prohibited for many Repetita instances. Contrary, for the ISP data,
only around 65-70% of paths are filtered out. As a result, the optimization for the Repetita instances is faster due to
the lower number of options to evaluate, but this also results in a worse overall solution quality. If we instead compare
results based on the percentage of excluded SR paths, they become much more similar. For example, for a SB factor
of 1.4, the percentage of excluded SR paths is also in the range of 65-70% and the resulting speedup is comparable to
the one of the ISP data with the respective “matching” SB factor of 1.1. We suspect that these variations are a product
of topological differences between the instances in the Repetita dataset and the real ISP backbone network. However,
investigating and identifying these differences is out of the scope of this work, but remains an interesting question for
future work.
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4.4. Demand Pinning
Another preprocessing technique briefly described in [20] and [21] is DP. It is based on the observation that in many

networks (i.e. WANs and ISP backbones) traffic flows are not uniformly distributed in size. Instead, traffic consist of
a few very large demands that make up a considerable amount of the total traffic volume and a rather large number
of very small demands. DP fixes the forwarding paths of all these small demands to standard SPR and only runs a
TE optimization for the larger ones. The idea is that the impact of the small demands on the overall solution quality
is negligible compared to the larger traffic flows. Not optimizing them will have virtually no impact on the overall
solution quality. To the best of our knowledge, there are no studies on the performance of the DP approach regarding
its impact on solution quality and computation time. However, in [20], it is mentioned that around 68% of demands in
the Microsoft WAN are of small size, making up a combined total of only 1.3% of the total traffic volume. If these results
transfer to other networks, as well, DP seems like a promising candidate for an SR preprocessing since fixing the path
of 68% of demands would translate to an equal reduction in the number of SR paths to consider during optimization.

Implementation Details: To implement DP, we first sort all traffic demands by size in ascending order. After this,
we keep fixing the smallest demands to their SPR paths until the total sum of “fixed” traffic reaches a certain share of
the total traffic volume given by the parameter 𝛼𝐷𝑃 ∈ [0, 1].

Evaluation Results
Results for the DP approach are depicted in Figures 1c and 2c. It can be seen that for the ISP data, an around

4.5× speedup can be achieved without substantially worsening the MLU. However, for larger 𝛼-values, the solution
quality deteriorates quickly. Results for the Repetita data look rather different. Here, we are able to exclude up to 20%
and more of the total traffic volume before a relevant MLU deterioration becomes observable. However, the speedup,
while overall slightly better than for the ISP data, remains rather similar at around 5×. The reason for those differences
lies in the distribution of the demand sizes in the traffic matrices of the two datasets. The real ISP traffic features a
substantially higher number of really small demands (w.r.t. the total traffic) than the artificially generated matrices in
the Repetita dataset. This is exemplarily depicted in Figure 5 for the largest instance of the ISP and Repetita dataset,
respectively. As a result, the same 𝛼-value allows for the exclusion of substantially more demands for the ISP network.
An 𝛼-value of 0.01, for example, excludes around 70-80% of all demands in the ISP matrices from optimization, while
only excluding around 15-20% of demands from the Repetita matrices.

4.5. Smart Node Selection
A very recent addition to the SR preprocessing landscape is the Smart Node Selection (SNS) approach presented

in [19]. It is the first to utilize AI/ML (i.e. deep reinforcement learning) for addressing the preprocessing (or node
selection) problem, not only aiming for a reduction of computation times but also catering to other objectives like
lowering control overhead and deployment costs. For this, SNS carries out two node selection procedures using a pre-
trained model. In one step, it selects the set of nodes that are allowed to be used as intermediate segments (so-called
I-nodes) and, in the other, it selects so-called T-nodes defining the set of nodes whose outgoing traffic is allowed to be
detoured by SR. The latter can be seen as a different form of DP, as it forces all those demands that do not originate at
one of the selected T-nodes to be routed via their standard SPR path.

When using fitting sizes for the I- and T-node sets, this kind of preprocessing can facilitate a considerable reduction
in computation time while only resulting in a small to moderate deterioration of solution quality [19]. The most notable
benefit of this approach, however, is the exceptionally low time in which the node selection process can be carried out.
Even for rather large networks with close to 150 nodes, the authors report preprocessing times in the single-digit
millisecond range. In the context of LP-based optimization which often takes multiple seconds, minutes, or in the
worst case even hours, these timings are basically negligible.

While the results reported in the paper generally look very promising, SNS also comes with a few drawbacks. First
of all, the fast node selection is achieved at the price of having to carry out a rather time-consuming training process
which, for larger networks, can take up to 10 hours or more. However, this is (arguably) acceptable since training can be
done beforehand in an offline fashion. Furthermore, the results even indicate that the trained model is rather stable with
regard to changes in traffic and even the network topology (i.e. failures) and, thus, retraining of the model does not seem
to be required that frequently. Another (potential) weakpoint, however, is the fact the T-node selection approach used
in SNS appears to be an inferior variant of the DP concept (cf. Section 4.4). Pinning all demands originating at certain
nodes to their SPR path is far less flexible than the original DP concept of pinning individual demands based on their
size (and, thereby, their presumed impact on TE performance). As a result, the respective “pinning” is considerably

A. Brundiers et al.: Preprint submitted to Elsevier Page 9 of 23



Speeding up Segment Routing Traffic Engineering with Path Preprocessing

0.05 0.15 0.3 0.5 0.7

I-Node Ratio NI
|V |

0

20

40

60

80

M
L

U
D

et
er

io
ra

ti
on

[%
]

(a) MLU deterioration.

0.05 0.15 0.3 0.5 0.7

I-Node Ratio NI
|V |

0

5

10

15

20

25

S
p

ee
d

u
p

F
ac

to
r

(b) Speedup.

Figure 3: Analysis of the performance of SNS for 36
instances from the Repetita dataset depending
on the share of nodes chosen as 𝐼-nodes (𝑁𝐼
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Figure 4: Analysis of the performance of SNS for 10
instances from the Repetita dataset depending
on the share of nodes chosen as 𝐼-nodes (𝑁𝐼
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)

and 𝑇 -nodes (𝑁𝑇
|𝑉 |

).

less fine-tunable and, thus, will (most likely) induce some form of “collateral damage” (i.e. large demands with non-
negligible impact on TE performance being pinned or, vice versa, a large set of minute demands remaining unpinned
in order to not prevent the detouring of only a few major demands originating at the same node). This can negatively
impact both the achievable speedup and the TE performance. Finally, limiting all SR paths to use the same small set
of allowed intermediate segments also introduces problems regarding latency constraints and router utilization, as we
have already discussed in the context of centrality-based middlepoint selection in Section 4.2.

Implementation Details: To examine the SNS approach, we use the original source code made publicly available6

by the authors to generate traffic matrices for training, train the model, and finally generate the respective I- and T-node
sets. The (hyper-)parameters are left unchanged as described in [19].

Evaluation Results
Due to the high training times required by the SNS approach, carrying out a full “parameter-sweep” evaluation

on all our evaluation instances is not feasible.7 Thus, we had to limit our evaluation to only a subset of instances and
parameter configurations.

Based on the recommendation in [19], our first evaluation fixes the share of nodes selected as 𝑇 -nodes to 50%
and only varies the number of allowed 𝐼-nodes. The results are depicted in Figure 3. It can be seen that SNS is able
to facilitate a speedup of up to around 15×, but this comes at the price of a considerable deterioration in solution
quality. Increasing the number of 𝐼-nodes reduces this deterioration but also the achievable speedup. Interestingly, the
improvement in solution quality stagnates at an 𝐼-node ratio of around 30%, with a considerable MLU deterioration
still observable (i.e. up to 60% or more). Even increasing it to as much as 70% brings virtually no improvement.
For comparison, the centrality-based approach achieves substantially better solution quality while using the same
percentage of nodes as intermediate segments (cf. Figure 1a).

We believe that this rather poor performance of SNS is due to the 𝑇 -nodes being chosen too aggressively. Not
being able to detour demands starting at 50% of the nodes is quite restrictive. Thus, we carry out a second examination
with increased 𝑇 -node ratios. The respective results are depicted in Figure 4. Here, it can be seen that, with higher
𝑇 -node ratios, results get considerably better, allowing SNS to achieve an around 2.5× to 4× speedup with only a minor
deterioration in solution quality. This puts SNS at the same level as most of the other approaches (i.e. SB and DP).

All in all, this evaluation basically confirms our initial considerations regarding potential shortcomings of the SNS
approach (cf. Section 4.5). Prohibiting the detouring of demands on a per-node basis is far more inflexible and, thus,
restrictive than the original DP approach. Using 𝛼𝐷𝑃 = 0.2, the latter can often exclude around 50-70% of all demands
on the Repetita instances with virtually no deterioration in solution quality (cf. Figure 1c). In contrast, the SNS approach
already struggles considerably at just 50%. Nonetheless, we believe that applying AI/ML to the SR path preprocessing

6Available at https://github.com/wlh320/SNS.
7Even when optimistically assuming an average training time of two hours per instance, such an evaluation would take hundreds of days.
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cessing on the two evaluation datasets.

problem is a very promising approach as, even with the discussed shortcomings, SNS is already able to perform about
on-par with other existing approaches. An adapted and extended version that fixes these “teething troubles” by carrying
out “real” DP on the level of individual demands and also selects an individual set of allowed 𝐼-nodes for each demand
might be able to considerably outperform the latter. Furthermore, SNS also shines by its fast node selection process
that makes it especially interesting for applications within very tight time-constraints.

4.6. SR Path Domination & Equivalency
All the previous approaches carry the risk of excluding SR paths that are needed for an optimal solution. As a

result, the solution quality can become arbitrarily worse when deploying these methods. To prevent this, one has to
ensure to only exclude SR paths for which it can be proven that they are not needed for an optimal solution. A first
step towards such an approach was presented in [25]. There, it is shown that a large portion of configurable SR paths
actually contain loop-like structures and the authors suspect that many of these paths are not required to obtain optimal
solutions. This assumption is further investigated and confirmed by Callebaut et al. [8]. They propose the concept of
dominated and equivalent SR paths. An SR path 𝑝1 is dominated by another path 𝑝2 if three conditions are satisfied.
First, both paths must have the same start- and endpoint. Second, assuming a uniform traffic flow on each path, for
every link 𝑙 ∈ (𝑝2) used by 𝑝2, the load put on 𝑙 by 𝑝2 must be lower or equal to the load put on 𝑙 by 𝑝1:

𝑙𝑜𝑎𝑑(𝑙, 𝑝2) ⩽ 𝑙𝑜𝑎𝑑(𝑙, 𝑝1) ∀ 𝑙 ∈ (𝑝2) (8)

Lastly, for at least one link in Equation 8 the strict inequality must hold. Analogously, two SR paths are equivalent, if
their set of used links and the resulting link-loads are exactly equal. This is the case if the first two conditions for SR
path domination hold but with exact equality for Equation 8.

Dominated SR paths are never needed for an optimal solution and for a set of equivalent paths, it is sufficient to
consider just one of them, allowing to exclude all others. It is shown in [8] that, based on these two observations, a
substantial number of SR paths can be ruled out prior to optimization, resulting in a significant reduction in computation
time. Furthermore, just like SB and centrality-based preprocessing approaches, this just requires information on the
network topology but not on traffic. Hence, it can be precomputed in advance which is quite useful since in [8],
computation times of up to 30 minutes or more are reported for just the preprocessing of larger topologies.

Implementation Details: We re-implemented the Path Domination & Equivalency (PDE) preprocessing as
described in [8].

Evaluation Results
Figure 6 depicts the speedup that is achievable with the SR PDE approach on our two datasets. Contrary to the

previous approaches, there is no need to look at MLU deterioration since the main idea of the SR PDE concept is to
retain provable optimality of the achievable MLUs. It can be seen that, for the Repetita data, computation times can be
improved by around a factor of four on most instances, with a couple of outliers even reaching close to a 10× speedup.
Those high outliers are a result of the special topology structures of certain instances. For example, the Ulaknet
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topology consists of three star shaped networks whose centers are interconnected with each other. Basically all SR
paths using one of the many stub-nodes as intermediate segment provide no TE benefit regarding the MLU and can
be ignored. This results in over 98% of all SR paths being excluded from optimization. On more “realistically” shaped
topologies (w.r.t. common network design principles), however, this number is much lower (mostly between 65-80%)
and, hence, the achievable speedup is also more moderate.

While PDE works quite well for the Repetita data, this does not hold for the real-world ISP network. Here, the
average achievable speedup is just around 1.5× and the maximum barely surpasses factor 2. The reason for this, again,
lies in the number of SR paths that are ruled out for each respective dataset. For the ISP dataset, this number is
substantially lower with just around 20% of the total number of SR paths compared to an average of around 80%
for most Repetita instances. We do not have a definitive answer for what causes this behavior, but we suspect that
it is a result of topological differences between the networks in the Repetita dataset and the real ISP network. For
example, the ISP network has virtually no stub-nodes since a common design goal for modern networks is to achieve
at least two-connectivity for all nodes. This facilitates reliability and robustness as it ensures that the network will not
be partitioned by single-link failures. Contrary, the Repetita topologies feature a rather large number of stub-nodes.
Since those are never needed as middlepoints to obtain an optimal solution, a larger number of stub nodes automatically
results in a larger number of dominated SR paths. This becomes visible when removing all stub-nodes from the Repetita
topologies, which reduces the number of excluded SR paths from around 80% on average to just 60%. For reasons of
space, we cannot delve deeper into this topic here and leave it for future work.

4.7. Comparative Discussion of the Evaluation Results
All in all, we have seen that each preprocessing approach has its pros and cons, with some performing better on

the Repetita data and some on the ISP data. Hence, there is no clear “winner” to be picked. However, we were able to
identify a certain trend regarding preprocessing concepts that are based on limiting the available middlepoints to the
same (small) set of nodes for every demand, namely SNS and the centrality-based approach. As already suspected in
the initial discussions in Section 4.5, this inflexibility results in the necessity to allow for a rather large number of nodes
as usable middlepoints in order to prevent the solution quality from deteriorating too much. This, in turn, causes the
achievable speedup to be relatively low (i.e. around 2–2.5×). In contrast, approaches like DP and SB that filter paths
individually for each demand are able to achieve higher speedup (i.e. around 4×) with less deterioration. Combined
with the fact that limiting all SR detours to the same set of nodes is also likely to induce certain practical problems, i.e.
regarding latency or hardware utilization (cf. Section 4.2), we come to the conclusion that filtering SR paths for each
demand individually likely is the superior approach with respect to both performance as well as operational concerns.

Furthermore, what became more and more clear during our evaluation, is the fact that considerable differences in
results are observable depending on the dataset used. This especially holds true for the SR PDE approach that works
really well for Repetita networks but considerably worse for the real Tier-1 ISP backbone. We track this down to
differences in topology and traffic characteristics between the two datasets. This reinforces our concerns regarding the
direct transferability of results obtained on the Repetita data with artificial traffic to real networks, already expressed
in Section 3. It also stresses the importance of also carrying out evaluations on real, recent network data. Of course,
our ISP dataset is “just one datapoint” that does not allow for drawing definitive and universal conclusions but other
recently reported information e.g., regarding the demand size distribution in the Microsoft network [20] is far closer
to the ISP network characteristics than to the Repetita data. To further investigate this, it would be desirable to repeat
our experiments on other recent data from real networks. However, to the best of our knowledge, there currently are
no publicly available datasets that provide such information.

5. Combining Preprocessing Approaches to Improve Performance
As seen before, there is no definitive answer to what the generally best preprocessing approach is since performance

varies between datasets. In this section we propose a concept for combining multiple preprocessing approaches to allow
for a more consistent performance across all datasets and to further improve the achievable speedup.8

5.1. Concept & Implementation
Our approach is based on the observation that, until now, we always considered each preprocessing approach

individually. However, they are not mutually exclusive. Therefore, it is possible to combine the different preprocessing
8A conceptually related but less extensive (and, thus, less effective) approach is also considered in [8], showing promising preliminary results.
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Figure 7: Computation pipeline of the proposed combined preprocessing approach. The most demanding preprocessing
step (i.e. PDE) is carried out last with the lowest number of policies left to check.

approaches into a single one. This can yield multiple benefits. First and foremost, it holds the potential of further
increasing the achievable speedup. Combining the individual sets of excluded SR paths allows to further increase the
number of SR paths that can be ignored during optimization. However, it is unclear whether the combination of multiple
exclusion sets that perform well individually will result in a well performing union set, as well. The combined set might
also become too restrictive and, hence, might result in substantial MLU deterioration. Secondly, combining different
preprocessing approaches might also lead to a more “stable” performance across our two datasets. In simple terms, by
combining an approach that works better on the ISP data (i.e., SB) with one that is more suited for the Repetita data
(i.e., PDE), we hope to leverage their individual benefits and get an algorithm that performs well on both datasets.

For our improved preprocessing algorithms, we combine the three approaches of SB, DP and SR PDE. The reason
for not including the centrality-based approach is that it generally performs worse than the other approaches with regard
to MLU deterioration and speedup. Furthermore, as already discussed in Section 4.2, it also features other weaknesses
when it comes to practical use (e.g., regarding latency constraints). The computation pipeline of our new combined
preprocessing approach (see Figure 7) starts with a DP operation that can be fine-tuned with the 𝛼𝐷𝑃 parameter. After
this, a SB step is carried out using the 𝛼𝑆𝐵 parameter. The PDE filtering comes last as it is the computationally most
demanding operation. Having already filtered out a large set of SR paths with the previous two operations which do
not need to be checked by PDE anymore, facilitates lower computation times.

5.2. Evaluation
We examine the performance of our combined approach on our two evaluation datasets for the 2SR algorithm.

Additionally, we also carry out a short exemplary evaluation for the MO-capable Shortcut 2SR (SC2SR) algorithm
proposed in [3].9 This is done to provide an insight into whether results are transferable to other SR TE algorithms,
even if those utilize a rather different SR variation. The results regarding MLU deterioration and speedup for various
parameter combinations are depicted in Figures 8 and 9, respectively. It can be seen that, for the Repetita dataset
(Figures 8a and 9a), with the right parameter configuration, we are able to achieve a 2SR speedup of around factor 7
to 8 with virtually no significant MLU deterioration. This is more than twice as good as what is achievable with any of
the existing approaches. Those all cap at a less than 4× median speedup before introducing a noticeable deterioration
in solution quality. To better visualize this, Figure 10 provides a dedicated comparison of the different preprocessing
approaches using the respective parameter setting that enables the highest speedup while resulting in close to no MLU
deterioration for most instances (i.e. the parameter settings highlighted in Figures 1 and 2). It can be seen that our
combined preprocessing considerably outperforms all existing approaches in terms of speedup while also inducing the
lowest deterioration in solution quality.10 Furthermore, when going back to Figures 8a and 9a, we see that if a moderate
level of MLU deterioration is acceptable (i.e. up to 10%), the speedup achievable with our combined preprocessing
approach increases even further to a factor of 10 or more.

The same findings also apply to the ISP dataset for both the 2SR (Figures 8b and 9b) and the MO-capable SC2SR
algorithm (Figures 8c and 9c). This confirms that our new preprocessing approach not only performs (more or less)
equally good across both datasets when the right parameters are chosen, but is also transferable to other SR optimization
algorithms even if the underlying SR concept is inherently different. Due to the immense computational efforts related
to the evaluation of SC2SR, we are not able to carry out a similar examination on the Repetita dataset. However, we

9For this, we need to adapt the DP procedure since, in the context of SR MO, policies are no longer associated with a dedicated demand, which
makes excluding policies based on pinned demands less straightforward. Further details on this and how to adapt DP to still be usable with MO are
provided in Appendix A.

10Apart from the PDE approach, of course, which is specifically designed to never induce any deterioration at all (cf. Section 4.6).
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(c) SC2SR on ISP dataset

Figure 8: MLU deterioration resulting from the combined preprocessing approach for different datasets and SR algorithms.
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(c) SC2SR on ISP dataset

Figure 9: Speedup achieved by the combined preprocessing approach for different datasets and SR algorithms.

have seen that, for the ISP data, results are basically directly transferable from 2SR to SC2SR. Based on this, we expect
the 2SR results depicted in Figures 8a and 9a to translate at least roughly to SC2SR, as well. This assumption is also
further backed up by first preliminary experiments on smaller samples from the Repetita dataset.

To put into perspective what an around 8–10× speedup actually means, some information on the computation
times of the ground-truth algorithms (i.e. without any preprocessing) are given in Table 3. It can be seen that, for
example, the SC2SR algorithm takes around two hours to compute, on average, and over four hours at max. With our
preprocessing, this can be reduced to just around 10 or 20 minutes, respectively. The benefits of our preprocessing
become even more apparent when looking at the 2SR algorithm. Here, we are able to reduce the average computation
time from 10min and more, to less than 2min for most of the ISP instances. This easily allows for the use of LP-based
optimization for use cases where network configuration is continuously adapted on a timescale of just a few minutes
(cf. e.g., [11]). Furthermore, we are now advancing into computation time regions in which it can be argued that the
2SR algorithm could even be used for tactical TE [31] that allows to quickly react to failures or traffic shifts [13].
Finally, we also believe that the performance achieved with our preprocessing approach is reasonably close to what
can actually be achieved with preprocessing in general. The reason for this are its extremely high numbers of excluded
SR paths. For the 2SR algorithm, our preprocessing already rules out 97-99% of all theoretically configurable 2SR
paths. This probably does not leave much room for further improvement since a certain number of options to choose
from is required before solution quality starts to degrade substantially.

6. Integrating Latency Bound Requirements into the Combined Preprocessing Approach
So far, we have mainly assessed the performance of preprocessing approaches based on the achievable speedup and

the resulting MLU deterioration, which are the two most important performance metrics in this context. However, when
it comes to utilizing such approaches for speeding up TE in actual production networks, there can be further aspects
to consider. One that is of particular importance for operators of large carrier networks (i.e. ISPs) are so-called latency
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Figure 10: Comparison of the median 2SR speedup achievable with different preprocessing approaches and the resulting
MLU deterioration for the Repetita dataset. (Parameter settings used for the respective approaches: DP: 𝛼𝐷𝑃 = 0.2;
Centrality: 40%; SB: 𝛼𝑆𝐵 = 1.5; Combined: 𝛼𝐷𝑃 = 0.25 and 𝛼𝑆𝐵 = 2.0)

Table 3
Computation times (in seconds) of the respective ground truth algorithms without any preprocessing.

Min Max Median Average

2SR Repetita 4 5456 25 248
ISP 178 1407 691 611

SC2SR ISP 2477 14568 5604 6571

bounds. Those define the maximum acceptable delay for a traffic demand, resulting from either rather general quality-
of-experience related goals (e.g., perceived quality of telephone and video calls dropping significantly if latency is too
high) or from more strict quality-of-service requirements specified in individual contracts with corporate customers
(so-called Service-Level Agreements (SLAs)). Especially in the latter case, making sure that TE solutions fulfill these
bounds is crucially important.

Unfortunately, excluding certain SR paths/policies from consideration during TE optimization, as it is the key idea
of the preprocessing and middlepoint selection approaches considered in this paper, can have a negative impact on the
satisfiability of such latency bound constraints. For example, by limiting all SR paths to use the same (small) number
of allowed middlepoints (as done by the centrality-based and SNS approaches), some demands might either be forced
over long detours that violate the respective latency bound or cannot be detoured at all, thereby negatively impacting
the achievable solution quality. Furthermore, it is not necessarily guaranteed that all latency bounds are fulfilled in the
initial network state (i.e. by SPR). Thus, it might not be sufficient to solely ensure that the respective TE approaches
do not introduce any new violations, but TE can actually be required to “fix” such initial violations, as well. In this
context, using preprocessing approaches like DP can induce problems11, as it excludes certain demands from being
optimized with TE, thereby completely removing the option to fix possible latency bound violations for the latter.

In the following, we address these concerns by not only demonstrating that our combined preprocessing approach
can be adapted to prevent it from having a negative impact on the satisfiability of latency bound constraints, but that the
whole objective of incorporating those into the optimization process can be done solely based on SR path preprocessing
as well. In this context, we consider two scenarios of increasing complexity:

• No-New-Violations (NNV): The introduction of new latency bound violations has to be prevented but initially
existing ones do not need to be fixed.

• Violation-Fix (VF): The introduction of new latency bound violations has to be prevented and all pre-existing
latency bound violations have to be fixed as well (given that they are actually fixable12 by TE).

11Especially when considering that “business customer” traffic flows for which there are specific SLA-related QoS constraints are often of rather
small size compared to the more general residential customer traffic.

12In some scenarios (e.g., the failure of an important low-latency link), some latency bound violations can be impossible to fix by TE

A. Brundiers et al.: Preprint submitted to Elsevier Page 15 of 23



Speeding up Segment Routing Traffic Engineering with Path Preprocessing

Table 4
Number of latency bound violations in the 2SR solutions for the ISP instances computed with different variants of the
combined preprocessing: 1) default (i.e. no latency considerations), 2) no-new-violations (NNV), and 3) violation-fix (VF).

Number of latency bound violations per instance
A B C D E F G H I J K L M N O P R S

default 28 30 34 32 51 107 46 60 349 580 559 355 399 404 460 708 735 740
with NNV 2 2 1 2 2 74 2 6 12 12 1 1 2 1 3 2 108 0
with VF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6.1. Implementation
Extending our combined preprocessing for the NNV scenario is rather straight forward. We simply add an additional

filtering step between the SB and the PDE filtering in our preprocessing pipeline (cf. Figure 7), that, for each demand,
rules out all those SR paths that would result in a (new) violation of the respective latency bound. Fixing pre-existing
latency bound violations, however, is a bit more complicated. For this, we first identify all those demands for which
there is a pre-existing latency bound violation that is actually fixable via TE. The latter can, for example, be checked
by running a shortest path computation based on link delays to get the minimal achievable delay for the respective
demand. Each of these demands is then excluded from the PDE and SB filtering steps to prevent the removal of SR
paths that could be used to fix the respective violation. Instead, we filter out all those SR paths (i.e. intermediate
segments) that result in the respective latency bound being violated, also including the SPR path. As a result, only SR
paths not required to fix latency bound violations are filtered out by the preprocessing and the only SR paths remaining
for consideration in the TE optimization are those adhering to the specified latency bounds.

6.2. Evaluation
In the following, we show in an exemplary evaluation that these new features can be incorporated into our combined

preprocessing approach without meaningfully deteriorating its previously seen performance. For this, we repeat the
previous experiments for the 2SR algorithm using our extended preprocessing approach with the new NNV and VF
features, respectively. For reasons of space and time, we do not conduct a full parameter sweep again, but only focus on
the parameter setting that we identified as enabling good speedup with close to no deterioration in solution quality in
the previous evaluations: 𝛼𝐷𝑃 = 0.015 and 𝛼𝑆𝐵 = 1.1 (cf. Figure 8b). Such an evaluation requires information on the
link delays and latency bounds of the respective instances. Unfortunately, the required information on the link delays
and latency bounds is notoriously hard to obtain and generally not publicly available as it is considered confidential by
most operators. The Repetita dataset, for example, does not feature such information and, thus, we cannot include it in
the following evaluation. Instead, we have to limit the latter to just the ISP dataset for which we were able to obtain
real latency bound and delay information from our ISP partner.13

Number of bound violations: In a first step, we look at the number of latency bound violations in the computed
2SR solution with and without the new extensions to our combined preprocessing approach, which are depicted in
Table 4. It can be seen that not considering latency bounds at all results in a substantial number of those being violated
in the final solution (cf. default row). This illustrates the importance of integrating latency bound constraints into the
optimization process in order to produce practically usable results. By using the new NNV preprocessing extension to
prevent the 2SR optimization from introducing new violations, the number of violations can be considerably reduced.
However, for virtually all instances, there are at least a few violations remaining which result from latency bounds that
were already violated prior to optimization. While this number is generally quite low, in some cases (i.e. instances 𝐹
and 𝑅), there is a considerable number of violations left. But even for those, our VF feature proves to be effective in
also resolving such initial violations. With it, solutions can be computed that adhere to all specified latency bounds
while still benefiting from the previously seen performance gains enabled by the combined preprocessing approach.

Impact on the achievable MLU: Having seen that the use of the combined preprocessing does not conflict with
latency bound constraints but actually enables a neat way to easily enforce them using its VF extension, the question
remains whether the latter has a negative impact on the achievable MLU. To analyze this, we compare the MLUs
achievable by 2SR when used with the new latency bound extensions of the combined preprocessing to those obtained
with its default version. The respective results are depicted in Figure 11). For reference, it also provides information

13For instance 𝑄, this information was not available. Hence, it will be omitted in the following examinations.
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on the respective ground-truth (GT) 2SR (meaning without any preprocessing) and SPR MLUs. Furthermore, all
MLU values are given relative to the theoretical optimal MLU computed with Multicommodity Flow (MCF).14 In this
context, a value of 1.0 denotes an optimal solution. It can be seen that, apart from two instances (i.e. 𝐵 and 𝐶), utilizing
the new NNV and VF extensions does not result in any meaningful deterioration of the solution quality compared to
the default version of our combined preprocessing (i.e. the blue circles), and still allows for (close to optimal) solutions
for nearly all instances.

Achievable Speedup: Finally, we examine the impact of the new latency bound related extension on the achievable
speedup (see Figure 12). In this context, the NNV and VF extensions do not only not result in a deterioration but
actually even facilitate a small but noticeable improvement, making the respective 2SR optimization even faster. ´The
explanation for this is rather straight forward. While the extensions (especially VF) may result in the DP and SB
preprocessing stage being skipped for demands whose latency bound is initially violated, the number of such demands
is rather small (cf. Table 4). Compared to the total number of demands which ranges between 4000 to 8000 depending
on the respective instance, these numbers are basically negligible and, thus, only result in a marginal increase in problem
complexity. However, the latency bound extensions simultaneously add a whole new filtering step which removes all
those SR paths that do not fulfill the respective latency requirements. This number is considerably larger than the few
“skipped” demands and, thus, the overall number of SR paths that are considered in the construction of the 2SR LP is
further reduced. Intuitively, this also results in a further improved speedup.

Overall, these examinations show that it is possible to adapt our combined preprocessing approach to also consider
important latency bound requirements without resulting in a meaningful deterioration of its previously demonstrated
performance. Apart from very few exceptions, the obtained MLUs stay virtually the same while the achieved speedup
even slightly improves.

14MCF [32, Ch. 4.4] provides a lower bound for the optimal MLU achievable with any kind of arbitrarily mighty TE.

A. Brundiers et al.: Preprint submitted to Elsevier Page 17 of 23



Speeding up Segment Routing Traffic Engineering with Path Preprocessing

7. Path Preprocessing for Heuristic Optimization in the Context of Tactical TE
So far, our study and related work only consider SR preprocessing in the context of improving performance of

LP-based TE approaches, since those notoriously suffer from scalability issues, negatively impacting their usability
for large networks. However, the observation that large portions of SR paths can be ignored during optimization
without considerably worsening the achievable solution quality could potentially be used to speed up other algorithmic
approaches as well. One area of TE in which computation time is particularly important is tactical TE [31] which aims
to quickly address and resolve problematic networks states (i.e. resulting from failures or unexpected traffic changes).
In this context, optimality of solutions is generally less important as long as a reasonably good one is provided fast.
While the exact definition of “fast” depends on the respective use case, most tactical TE applications generally aim to
provide solutions within a few seconds or less. Even when utilizing preprocessing approaches to boost performance,
LP-based optimization often remains too slow to achieve this (cf. e.g., the SC2SR algorithm examined in Section 5.2).
Therefore, many approaches catered towards tactical TE (e.g., [33, 14, 34]) instead rely on heuristic optimization.
While such approaches are intrinsically fast, further improving them is of great practical interest as it allows to combat
problematic network states even quicker, following the premise of “The faster the better”. In the following, we thus
examine whether the concept of path preprocessing can also be used to further speed up heuristic optimization in the
context of tactical TE.

7.1. Evaluation Setup
For this, we apply our combined preprocessing approach to Midpoint Optimization Local Search (MOLS) [13, 34],

a state-of-the-art tactical TE heuristic for SR MO. This is done by altering the MOLS implementation to not consider
policies that are ruled out by the preprocessing during the neighborhood exploration that determines the next local
search move (i.e. insertion of an SR policy). Apart from that, MOLS is used and parameterized as described in [34].

As already explained above, finding a truly optimal solution is of lesser interest in the context of tactical TE as long
as the solution is sufficient for fulfilling the objective of resolving the respective critical network event (i.e. removing
overutilization). Therefore, the following evaluation also focuses on the latter by no longer quantifying the deterioration
in solution quality potentially resulting from the preprocessing based on the optimal achievable MLU but simply based
on the binary decision of whether MOLS is still able to resolve the respective overutilization scenario or not. For this
examination, we use all those instances from the Repetita dataset that exhibit SPR overutilization (i.e. an SPR MLU
> 1.0), which corresponds to a total set of 67 instances.15 For each of these instances, we measure the time taken by
MOLS to find a solution that resolves the initial overutilization (i.e. has an MLU < 1.0), when used with different
parameterizations of the combined preprocessing approach. Thereby, a maximum timelimit of two minutes is applied
to account for instances that are not solvable anymore due to a potentially too restrictive preprocessing. Furthermore,
since MOLS features non-deterministic components, all experiments are repeated five times and the following results
show the average across these five runs.

7.2. Evaluation Results
The results of our evaluations regarding the achievable solution quality and speedup are shown in Figures 13a

and 13b, respectively. It can be seen that, similar to the use case of strategic LP-based optimization (cf. Section 5.2),
choosing too aggressive filtering parameters results in a considerable deterioration of the achievable solution quality,
with the number of resolved overutilization scenarios dropping as low as just 39%. However, with a less restrictive
preprocessing, a sufficiently good solution quality can still be achieved. For reference, it should be noted that even
default MOLS is only able to prevent overutilization for 96% of the considered instances. Thus, a value of 0.96 can be
interpreted as the preprocessing not inflicting any deterioration in terms of solution quality.

When it comes to the achievable speedup (see Figure 13b), the first thing to notice is the fact that a very aggressive
preprocessing actually results in the computation time to increase. While this might seem odd at first glance, the
explanation is rather simple. In our evaluation, MOLS stops as soon as it finds a solution that prevents overutilization.
If, due to a too restrictive preprocessing, such a solution cannot be found, MOLS runs for the whole two minutes until
it is stopped by the timelimit. As a result, preprocessing parameter configurations that are too restrictive and result in a
large number of unsolved instances also cause higher computation times. However, being too conservative in choosing
the preprocessing parameters also causes suboptimal results, as it will not be utilized to its full potential in that case.
Taking into account both of these aspects, the optimal parameter setting according to our evaluation is 𝛼𝐷𝑃 = 0.25 and

15Since none of the instances in our ISP dataset exhibit any overutilization, this dataset is not applicable for a use in the following evaluation.
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Figure 13: Analysis of the impact of different 𝛼𝐷𝑃 and 𝛼𝑆𝐵 values on the performance of the combined preprocessing
approach when applied to the MOLS algorithm.
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optimization algorithms to the time required to carry out the combined preprocessing (with 𝛼𝐷𝑃 = 0.25 and 𝛼𝑆𝐵 = 1.75).

𝛼𝑆𝐵 = 1.75 which achieves an around 37.5% speedup on average while not resulting in any deterioration of MOLS’
ability to deal with overutilization.

This speedup is considerably lower than those achieved for LP-based optimization (cf. Section 5.2), but this was to
be expected. While LP-based algorithms generally consider basically all feasible SR paths/policies during optimization,
heuristic approaches like MOLS put in great effort in order to only examine very small but promising areas of the whole
solution space. As a result, a non-negligible share of the paths/policies excluded by the preprocessing would probably
never be considered by the heuristic algorithm anyway. Some of the measures taken by MOLS even somewhat overlap
with the concepts utilized in our combined preprocessing. For example, MOLS selects promising moves based on the
volume of traffic they can detour away from the current bottleneck link (cf. [34]). To a certain extent, this resembles
a form of demand pinning as it substantially reduces the chances of considering policies that only detour very small
demands. Furthermore, due to the already very low computation times of tactical TE approaches, there is generally
also less room for improvement, especially when considering that computing the respective preprocessing also takes
up a fair share of computation time. As a result, the “return-of-investment” for spending extra time on preprocessing
diminishes compared to LP-based optimization. This becomes particularly apparent when comparing the computation
times of the respective base algorithm(s) to the time required to compute the combined preprocessing (see Figure 14). It
can be seen that (especially for larger instances) the latter is quite close to the total computation time of default MOLS,
whereas the LP-based 2SR algorithm takes orders of magnitude more time to compute, making a preprocessing far
more effective and attractive here.

Considering all this, being able to still shave off around 37.5% of computation time from already rather performance
optimized tactical TE algorithms like MOLS solely by preemptively pruning the set of considered policies is still a
notable achievement. But further looking into possibilities to reduce the computation time of preprocessing approaches
(e.g., by utilizing AI/ML) remains an interesting and promising direction for future work.
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8. Discussion & Limitations
In our studies, we only consider SR using at most two node segments per path. While it has been shown that

this is sufficient to obtain virtually optimal solutions in many practical use cases [2, 4], there also are scenarios in
which higher order segment paths or the use of adjacency segments can be necessary. We argue that the performance
gains achievable with preprocessing approaches for such algorithms are probably even higher than those observed
by us regarding 2SR. The reasoning for this is as follows. While adjacency segments or a general higher number of
segments can be required to facilitate the implementation of certain forwarding paths that cannot be built with 2SR,
this number is relatively small in most scenarios. Most of the newly considered paths can already be implemented
with 2SR or do not have any practical value (i.e. looping paths that visit a segment multiple times). Thus, increasing
the number of segments generally also results in an increase in the ratio of “useless to useful” paths, which, in turn,
improves the effectiveness of preprocessing approaches. This has also been reported by Callebaut et al. [8]. They show
that the number of dominated SR paths grows from only 50% when using 2SR to around 90% and 97% for 3SR and
4SR, respectively. Thus, without having explicitly considered higher order segment paths or adjacency segments in our
study, the performance improvements shown here should resemble a lower bound for what can be achieved for those,
as well.

Furthermore, as briefly mentioned in the beginning of Section 3, there are other approaches to improve the
computation time of LP-based TE or LP-solving in general. This includes decomposition methods like column
generation [12], (Lagrangian) relaxation techniques [35], distributed computing [36], or even the application of ML-
based approaches to speed up branch-and-cut procedures [37]. While examining this is out of the scope of this paper,
looking further into the possibility of utilizing such concepts or even combining them with the path preprocessing
approaches considered here remains an interesting direction for future work. Especially when considering that the
performance gains achievable by “just” further refining and enhancing the path preprocessing concept are probably
rather limited due to current approaches already ruling out up to 99% of SR paths (cf. Section 5.2). In this context,
there is probably more to gain by examining the complementary usage of completely different speedup approaches
and, thus, we plan to look into this in the future.

9. Conclusion
While LP-based optimization is a prominent way for solving SR TE problems, its poor scalability imposes a

considerable limitation for its applicability in time-constrained use cases. To address this, a variety of preprocessing
strategies have been proposed that aim to reduce problem complexity by preemptively limiting the number of SR paths
considered during optimization. Unfortunately, the corresponding research landscape is not really well formed yet,
resulting in basically all publications overlooking at least some or even all of the previously existing related work (cf.
Table 1). This, together with other factors regarding the respective evaluation setups (e.g., the sole use of artificially
generated network traffic and generally very small sample sizes) render a meaningful assessment and comparison of
existing preprocessing strategies in terms of their effectiveness virtually impossible (cf. Section 3).

To address this, we conduct the first extensive literature review of existing preprocessing approaches, comple-
mented by a large-scale comparative performance study featuring a plethora of different problem instances including
recent real-world data from a globally operating Tier-1 ISP. This, hopefully, can function as a valuable point of
reference for future works in this area, not only clearly outlining existing work but also providing deeper insights
into their respective strength and weaknesses and the resulting implications on their performance. In fact, we already
utilize the insights gained from this study to facilitate the second major contribution of this paper: The proposition of
a combination of multiple preprocessing approaches to further improve performance. With this novel approach, the
number of 2SR paths to consider for optimization can often be preemptively reduced by as much as 97-99%, while
still obtaining close to optimal solutions. This lowers the computation times of different LP-based TE algorithms by a
factor of 10 or more without a significant deterioration in solution quality, which is more than twice as good as what is
achievable with any of the previously existing methods. Furthermore, our approach achieves this while not negatively
interfering with the satisfiability of latency bound constraints, a crucial practical requirement in many networks, so far
not addressed in previous works. In combination, this represents a major improvement over the current state-of-the-art
and further facilitates the reliable use of LP-based TE in large segment-routed networks. Lastly, we also demonstrated
that the concept of SR path preprocessing can also be applied in the context of tactical TE. While the achievable
speedup is – as to be expected – considerably lower than for strategic LP-based optimization, the proposed combined
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preprocessing approach still facilitates an around 37% performance improvement for MOLS, a state-of-the-art tactical
TE heuristic.

We believe that the latter number can be even further improved by overcoming the limitations imposed by the
– at least in the context of tactical TE – rather high computation times of our combined preprocessing for larger
networks. For this, AI/ML-based approaches seem to be very promising as they allow for a lightning-fast node selection
process [19]. However, our examinations have shown that existing approaches are still limited in their functionality
and performance and also exhibit potential problems regarding the practical use in actual production networks. Thus,
we plan to further investigate the topic of applying AI/ML-based methods to the SR path preprocessing problem by
revising and extending existing approaches based on the insights gained in this paper.
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A. Adapting Demand Pinning for the Use with Segment Routing Midpoint Optimization
The general idea of DP is to reduce the complexity of TE optimization by excluding a selected set of demands (i.e.

negligibly small ones) from consideration during optimization and simply routing them via the standard shortest path.
In the context of conventional end-to-end (E2E) SR where policies are directly associated with a certain demand (i.e.
the demand between their head- and tailend nodes), translating this concept into a policy/path prefiltering approach is
rather straight forward. For each pinned demand, all of its associated SR paths are excluded from consideration during
the TE optimization (cf. Section 4.4). In the context of MO, however, this does not work anymore since SR policies
are no longer directly associated to a certain demand (cf. Section 2). Simply excluding all policies that can detour a
pinned demand does not work either since, due to MO policies being able to detour multiple demands, the respective
policy might be needed to detour other unpinned demands as well, with its exclusion thereby unwantedly limiting the
traffic steering options for the latter.

In order to still leverage the DP approach in the best possible way, we, therefore, adapt it for the use with SR MO.
For this, we only exclude those policies from consideration for which we can be sure that they can only be used to
detour pinned demands and are never needed to detour unpinned ones. To compute this set, we start off with an empty
set of allowed policies and then iterate over all unpinned demands. For each of those, we generate the set of policies
eligible to detour the respective demand according to the deployed MO concept and add them to our set of allowed
policies. At the end of this iteration, the latter set contains all policies that we do not want to exclude. Hence, all policies
not contained in it can be filtered out. For a better understanding, a pseudocode description of this procedure is given
in Algorithm 1.

Finally, it should be noted that this adaption results in “pinned” demands not actually being guaranteed to be
pinned to their SPR path since they might be detoured as “collateral damage” by MO policies configured for rerouting
unpinned demands. However, this is no issue at all since the decision to pin a demand is not based on any kind of
operational requirements or constraints, but simply done as a means to reduce the complexity of the computation.
While the effectiveness of the latter might be slightly impacted due to fewer policies being excluded, it still performs
really well in our combined preprocessing approach as shown by the results from Section 5.2.
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Algorithm 1 Adapted DEMANDPINNING(𝛼𝑑𝑝,TM) procedure for the use with MO. (TM ∶= Traffic Matrix)

1: // At the start, all paths/policies are disabled
2: allowedPolicies ← ∅
3: sum𝑡𝑚𝑝 ← 0
4: // Iterate over demands (sorted descending by size)
5: for demand 𝑑 ∈ GETSORTEDDEMANDS(TM) do
6: if sum𝑡𝑚𝑝

TOTALTRAFFIC(TM) ≥ (1 − 𝛼𝑑𝑝) then
7: return allowedPolicies
8: else
9: sum𝑡𝑚𝑝 += SIZE(𝑑)

10:  ← GETELIGIBLEPOLICIESFORDEMAND(𝑑)
11: for policy 𝑝 ∈  do
12: allowedPolicies.ADD(𝑝)
13: return allowedPolicies
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